
Propositional Logic 
 

Reading:  Chapter 7.1, 7.3 – 7.5 

[Partially based on slides from Jerry Zhu, Louis Oliphant and Andrew Moore] 

              

Logic 
•  If a problem domain can be represented formally, then 

a decision maker can use logical reasoning to make 
rational decisions 

•  Many types of logic 
§  Propositional Logic (Boolean logic) 
§  First-Order Logic (aka first-order predicate calculus) 
§  Non-Monotonic Logic 
§  Markov Logic 

•  A logic includes: 
§  syntax:  what is a correctly-formed sentence? 
§  semantics:  what is the meaning of a sentence? 
§  Inference procedure (reasoning, entailment):  what 

sentence logically follows given knowledge? 
              

Propositional Logic 

•  A symbol in Propositional Logic (PL) is a symbolic 
variable whose value must be either True or False, 
and which stands for a natural language statement 
that could be either true or false 

§  A = “Smith has chest pain” 
§  B = “Smith is depressed” 
§  C = “It is raining” 

              

 
 
 
 
 
 
 

((¬P ∨ ((True ∧ R) ⇔ Q)) ⇒ S))   well formed (“wff” or “sentence”) 

(¬(P ∨ Q) ∧  ⇒ S)                not well formed 
 

Propositional Logic Syntax 
Sentence  →   AtomicSentence | ComplexSentence 
AtomicSentence  →   True | False | Symbol 
Symbol  →   P | Q | R | . . . 
ComplexSentence  →   ¬ Sentence 

 |  ( Sentence ∧ Sentence ) 
 |  ( Sentence ∨ Sentence ) 
 |  ( Sentence ⇒ Sentence ) 
 |  ( Sentence ⇔ Sentence ) 

 
BNF (Backus-Naur Form) grammar for Propositional Logic 

              



((¬P ∨ ((True ∧ R) ⇔ Q)) ⇒ S) 
 

Means True

Means “Not”
Means “Or” -- disjunction

Means “And” -- conjunction

Means “iff” -- biconditional

Means “if-then”  
implication

() control the order of operations

Propositional symbols must be specified

Propositional Logic Syntax 

              

Propositional Logic Syntax 

•  Precedence (from highest to lowest): 

¬, ∧, ∨, ⇒, ⇔

•  If the order is clear, you can leave off parentheses 
 
¬P ∨ True ∧ R ⇔ Q ⇒ S  ok (though not recommended) 
P ⇒ Q ⇒ S    not ok 

              

Semantics 
•  An interpretation is a complete True / False assignment to 

all propositional symbols 
§  Example symbols: P means “It is hot”, Q means “It is 

humid”, R means “It is raining” 
§  There are 8 interpretations (TTT, ..., FFF) 

•  The semantics (meaning) of a sentence is the set of 
interpretations in which the sentence evaluates to True 

•  Example:  the semantics of the sentence P ∨ Q is the set of 
6 interpretations:  
§  P=True, Q=True, R=True or False 
§  P=True, Q=False,  R=True or False 
§  P=False, Q=True,  R=True or False 

•  A model of a set of sentences is an interpretation in which 
all the sentences are true 

              

Evaluating a Sentence under an Interpretation 
•  Calculated using the definitions of all the connectives, 

recursively 
 
 
 
 
 

•  Pay attention to ⇒
§  “5 is even implies 6 is odd” is True! 
§  If P is False, regardless of Q, P ⇒ Q is True 
§  No causality needed: “5 is odd implies the Sun is a 

star” is True 

              



Understanding “⇒” 
•  This is an operator.  Although we call it “implies” or 

“implication,” do not try to understand its semantic 
form from the name.  We could have called it “foo” 
instead and still defined its semantics the same way. 

•  A ⇒ B “means” A is sufficient but not necessary to 
make B true 

•  Example: 
§  Let A be “has a cold” and B be “drink water” 
§  A ⇒ B can be interpreted as “should drink water” 

when “has a cold.” 
§  However, you can drink water even when you do 

not have a cold.  Thus A ⇒ B is still true when A is 
not true. 

              

P Q R ¬P Q ∧ R ¬P ∨ (Q ∧ R) Wff 
 

F F F T F T F 
F F T T F T F 
F T F T F T T 
F T T T T T T 
T F F F F F T 
T F T F F F T 
T T F F F F T 
T T T F T T T 

Example 
(¬P ∨ (Q ∧ R)) ⇒ Q 

Satisfiable: a sentence that is true under some interpretation(s) 
Deciding satisfiability of a sentence is NP-complete 

              

Example 
((P ∧ R) ⇒ Q) ∧ P ∧ R ∧ ¬Q 

Unsatisfiable: a sentence that is false under all interpretations 
Also called  inconsistent or a contradiction 

              

P Q R P ⇒ Q P ∧ ¬Q Wff 
F F F T F T 
F F T T F T 
F T F T F T 
F T T T F T 
T F F F T T 
T F T F T T 
T T F T F T 
T T T T F T 

Example 
(P ⇒ Q) ∨ (P ∧ ¬Q) 

Valid: a sentence that is true under all interpretations 
Also called a tautology 

              



Knowledge Base (KB) 
•  A knowledge base, KB, is a set of sentences  

Example KB: 
§  ChuckGivingLecture ⇔ (TodayIsTuesday ∨ 

TodayIsThursday) 
§  ¬ChuckGivingLecture  

•  It is equivalent to a single long sentence:  the 
conjunction of all sentences 
§  (ChuckGivingLecture ⇔ (TodayIsTuesday ∨ 

TodayIsThursday)) ∧ ¬ChuckGivingLecture 
 

•  A model of a KB is an interpretation in which all 
sentences in KB are true  

              

Entailment 

•  Entailment is the relation of a sentence β  logically 
following from other sentences α  (e.g., KB) 

α ⊨ β

•  α ⊨ β if and only if, in every interpretation in which α is 
true, β is also true;  i.e., whenever α is true, so is β;    
all models of α and also models of β 

•  Deduction theorem:  α ⊨ β if and only if α ⇒ β is valid 
(always true) 

•  Proof by contradiction (refutation, reductio ad 
absurdum):  α ⊨ β if and only if α ∧ ¬β is unsatisfiable  

•  There are 2n interpretations to check, if KB has n 
symbols 

              

Entailment 
•  Entailment is the relation of a sentence β  logically 

following from other sentences α  (e.g., the KB) 

α ⊨ β

•  α ⊨ β if and only if, in every interpretation in which α 
is true, β is also true 

β is true 
 

All interpretations 
 
 
 
 
 

α is true 

              

Deductive  Inference 
•  Say you write a program that, according to you, 

proves whether a sentence β is entailed by α 
•  The thing your program does is called deductive 

inference 
•  We don’t trust your inference program (yet), so we 

write things your program finds as 

α ⊢ β
•  It reads “β is derived from α by your program” 
•  What properties should your program have? 

§  Soundness:  the inference algorithm only derives 
entailed sentences.   That is, if  α ⊢ β  then  α ⊨ β

§  Completeness:  all entailment can be inferred.     
That is, if  α ⊨ β  then  α ⊢ β

 
 

              



Soundness and Completeness 

•  Soundness says that any wff that follows deductively 
from a set of axioms, KB, is valid (i.e., true in all 
models) 

•  Completeness says that all valid sentences (i.e., true 
in all models of KB), can be proved from KB and 
hence are theorems 

              

Method 1:  Inference by Enumeration 

LET:     KB = A ∨ C, B ∨ ¬C       β = A ∨   B 

QUERY:  KB ⊨ β ? 
 A  B  C 
false false false 
false false true 
false true false 
false true true 
true false false 
true false true 
true true false 
true true true 

NOTE: The computer doesn't 
know the meaning 
of the proposition symbols 

So, all logically distinct cases 
must be checked to prove that 
a sentence can be derived 
from KB 

Also called  Model Checking or Truth Table Enumeration 

              

Inference by Enumeration 

LET:     KB = A ∨ C, B ∨ ¬C       β = A ∨   B 

QUERY:  KB ⊨ β ? 
A∨C B∨ ¬C KB 
false true false 
true false false 
false true false 
true true true 
true true true 
true false false 
true true true 
true true true 

Rows where all of 
sentences in KB 
are true are the 
models of KB 

 A  B  C 
false false false 
false false true 
false true false 
false true true 
true false false 
true false true 
true true false 
true true true 

              

Inference by Enumeration 

LET:     KB = A ∨  C, B ∨ ¬C       β = A ∨   B 

QUERY:  KB ╞ β ? 

A∨C B∨ ¬C KB 
false true false 
true false false 
false true false 
true true true 
true true true 
true false false 
true true true 
true true true 

β is entailed by KB 
if all models of KB 
are models of β, 
i.e., all rows 
where KB is true, 
β is also true 

 A  B  C 
false false false 
false false true 
false true false 
false true true 
true false false 
true false true 
true true false 
true true true 

A∨B 
false 
false 
true 
true 
true 
true 
true 
true 

YES! 

In other words: 
KB ⇒ β is valid 

KB⇒β  
 true 
 true 
 true 
 true 
 true 
 true 
 true 
 true 

              



Inference by Enumeration 

•  Using inference by enumeration to build a complete 
truth table in order to determine if a sentence is 
entailed by KB is a complete inference algorithm for 
Propositional Logic 

•  But very slow:  takes exponential time 

              

Method 2: Natural Deduction using 
Sound Inference Rules 

Goal:  Define a more efficient algorithm than 
enumeration that uses a set of inference rules 
to incrementally deduce new sentences that are 
true given the initial set of sentences in KB, plus 
uses all logical equivalences 

              

Logical Equivalences 

You can use these equivalences to derive or modify 
sentences 

              

•  Modus Ponens (Latin for “mode that affirms”) 
 
 
 
•  And-Elimination 

β

Sound Inference Rules 

α ∧ β
α

Note:  Prove that an inference rule 
is sound by using a truth table, e.g.: 

P Q P P⇒Q P ∧ 
(P⇒Q) Q 

(P ∧ 
(P⇒Q)) 
⇒ Q 

T T T T T T T 
T F T F F F T 
F T F T F T T 
F F F T F F T 

α  ⇒ β,  α



Some Sound Inference Rules 

•  Implication-Elimination, IE 
(Modus Ponens, MP) 

α⇒β,  α 
β 

l  And-Elimination, AE 

l  And-Introduction, AI 

l  Or-Introduction, OI 

α1 ∧ α2 ∧ … ∧ αn 
αi 

α1, α2, … , αn 
α1 ∧ α2 ∧ … ∧ αn 

αi 
α1 ∨ α2 ∨ … ∨ αn 

l  Double-Negation Elimination, 
DNE 

¬ ¬ α 
α 

              

Inference Rules 

•  Each inference rule formalizes the idea that  
 “A infers B” (A ⊢ B) in terms of  
 “logically follows” (A ⊨ B) 

 
•  Doesn’t say anything about deducibility – just says 

for each interpretation that makes A true, that 
interpretation also makes B true 

              

Question 

What’s the difference between 
 
≡    (logical equivalence) 
⊨    (entails) 
⊢   (derived from; infers) 

              

Natural Deduction = Constructing a Proof 

•  A Proof is a sequence of inference steps that leads 
from α (i.e., KB) to β (i.e., query) 

•  This is a search problem! 

KB:  
1.  (P ∧ Q) ⇒ R 
2.  (S ∧ T) ⇒ Q 
3.  S 
4.  T 
5.  P  
 
Query: 
     R 

              



Proof  by  Natural  Deduction 

1.  S    Premise (i.e., given sentence in KB) 
2.  T    Premise 
3.  S ∧ T  Conjunction(1, 2)  (And-Introduction) 
4.  (S ∧ T) ⇒ Q  Premise 
5.  Q    Modus Ponens(3, 4) 
6.  P    Premise 
7.  P ∧ Q  Conjunction(5, 6) 
8.  (P ∧ Q) ⇒ R  Premise 
9.  R    Modus Ponens(7, 8) (Last line is query sentence) 

              

Monotonicity Property 

•  Note that natural deduction relies on the 
monotonicity property of Propositional Logic:  

 Deriving a new sentence and adding it to KB does 
 NOT affect what can be entailed from the original KB 

 
 
•  Hence we can incrementally add new true 

sentences that are derived in any order 
 
•  Once something is proved true, it will remain true 

              

Proof  by Natural  Deduction 

KB:  
1. ChuckGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday) 
2. ¬ ChuckGivingLecture  
 
Query: 
    ¬ TodayIsTuesday  

              

Proof 

KB:  
1. ChuckGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday) 
2. ¬ ChuckGivingLecture  
 
3. (ChuckGivingLecture ⇒ (TodayIsTuesday ∨ 
TodayIsThursday)) ∧ ((TodayIsTuesday ∨ TodayIsThursday) ⇒ 
ChuckGivingLecture)  iff/biconditional-elimination to 1 
4. (TodayIsTuesday ∨ TodayIsThursday) ⇒ ChuckGivingLecture  
and-elimination to 3 
5. ¬ ChuckGivingLecture ⇒ ¬(TodayIsTuesday ∨ 
TodayIsThursday) contraposition to 4  
6. ¬(TodayIsTuesday ∨ TodayIsThursday)   Modus Ponens 2,5 
7. ¬TodayIsTuesday ∧ ¬TodayIsThursday   de Morgan to 6 
8. ¬ TodayIsTuesday   and-elimination to 7 

              



Resolution Rule of Inference 

•  Resolution Rule of Inference 

•  Examples 

A
B B,A ¬∨

FEDCB
FEA D,CBA

∨¬∨∨¬∨
∨¬∨¬∨¬∨∨

γα
γβ β,α

∨
∨¬∨

called “unit resolution” 

              

Resolution 

•  Take any two “clauses” where one contains some 
symbol, and the other contains its complement 
(negative) 

P ∨ Q ∨ R   ¬Q ∨ S ∨ T 
 

•  Merge (resolve) them, by throwing away the symbol 
and its complement, to obtain their resolvent clause: 

P ∨ R ∨ S ∨ T 
 

•  If two clauses resolve and there’s no symbol left, you 
have derived False, aka the empty clause

              

Method 3:  Resolution Refutation 

•  Show KB ⊨ α by proving that KB ∧ ¬α is 
unsatsifiable, i.e., deducing False from KB ∧ ¬α  

•  Your algorithm can use all the logical equivalences to 
derive new sentences, plus: 

•  Resolution rule: a single inference rule 
§  Sound: only derives entailed sentences 
§  Complete: can derive any entailed sentence 

•  Resolution is refutation complete:                  

if KB ⊨ β, then KB ∧ ¬ β ⊢ False  
§  But the sentences need to be preprocessed into a 

special form   
§  But all sentences can be converted into this form 

              

Resolution Refutation Algorithm 

1. Add negation of query to KB 
2. Pick 2 sentences that haven’t been used before and 

can be used with the Resolution Rule of inference 
3. If none, halt and answer that the query is NOT 

entailed by KB 
4. Compute resolvent and add it to KB 
5. If False in KB 

§  Then halt and answer that the query IS entailed 
by KB 

§  Else Goto 2 

              



Conjunctive Normal Form (CNF)  

1.  Replace all ⇔ using iff/biconditional elimination 
•  α ⇔ β   ≡  (α ⇒ β) ∧ (β ⇒ α) 

2.  Replace all ⇒ using implication elimination 
•  α ⇒ β  ≡  ¬α ∨ β 

3.  Move all negations inward using 
•  double-negation elimination 

¬(¬α)  ≡  α 
•  de Morgan's rule 

¬(α ∨ β)  ≡  ¬α ∧ ¬β 
¬(α ∧ β)  ≡  ¬α ∨ ¬β 

4.  Apply distributivity of ∨ over ∧  
•  α ∧ (β ∨ γ)  ≡  (α ∧ β) ∨ (α ∧ γ)    + 1 more 

 
              

Convert Sentence into CNF 

A ⇔ (B ∨ C)         starting sentence 
 
(A ⇒ (B ∨ C)) ∧ ((B ∨ C) ⇒ A )   iff/biconditional elimination 

 
(¬A ∨ B ∨ C) ∧ (¬(B ∨ C) ∨ A )   implication elimination 

 
(¬A ∨ B ∨ C) ∧ ((¬B ∧ ¬C) ∨ A )   move negations inward 

 
(¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A)  distribute ∨ over ∧

called a “clause” 
              

Resolution Refutation Steps 

•  Given KB and β (query)  
•  Add ¬ β to KB, and convert all sentences to CNF 
•  Show this leads to False (aka “empty clause”).  Proof 

by contradiction 

•  Example KB: 
§  A ⇔ (B ∨ C) 
§  ¬A 

•  Example query: ¬B 

              

Resolution Refutation Preprocessing 

•  Add ¬β to KB, and convert to CNF: 
 

a1:  ¬A ∨ B ∨ C 
a2:  ¬B ∨ A 
a3:  ¬C ∨ A 
b:  ¬A 

c:  B 

•  Want to reach goal:  False  (empty clause) 

              



Resolution Refutation Example 

a1:  ¬A ∨ B ∨ C 
a2:  ¬B ∨ A 
a3:  ¬C ∨ A 
b:  ¬A 

c:  B 

 
Step 1: resolve a2, c:   A 

 
Step 2: resolve above and b:    empty clause / false 

 

              

Example 

•  Given: 
§  P ∨ Q 
§  P ⇒ R 
§  Q ⇒ R 

•  Prove:     R 

              

Example 
•  Given: 

§  (P ⇒ Q) ⇒ Q 
§  (P ⇒ P) ⇒ R 
§  (R ⇒ S) ⇒ ¬(S ⇒ Q) 

•  Prove:     R 

              

Example 

•  Given: 
§  P 
§  ¬P 

•  Prove:   R  

              



Efficiency of the Resolution Refutation 
Algorithm 

•  Run time can be exponential in the worst case 
§  Often much faster 

•  Factoring: if a new clause contains duplicates of the 
same symbol, delete the duplicates 

P ∨ R ∨ P ∨ T    ≡  P ∨ R ∨ T 
•  If a clause contains a symbol and its complement, the 

clause is a tautology and is useless; it can be thrown 
away 
a1:  (¬A ∨ B ∨ C) 
a2:  (¬B ∨ A) 
Resolvent of a1 and a2 is:  B ∨ C ∨ ¬B 
Which is valid, so throw it away 

               

Resolution Refutation Strategies 

•  Resolution refutation proofs can be thought of as 
search: 
§  reversed construction of search tree (leaves to 

root) 
§  leaves are KB clauses and ¬ query 
§  resolvent is new node with arcs to parent clauses 
§  root is False clause 

Resolution Refutation Strategies 

•  Breadth-First 
§  level 0 clauses: KB clauses and ¬ query 
§  level k clauses: resolvents computed from 2 

clauses: 
•  one of which must be from level k-1 
•  other from any earlier level 

§  compute all possible level 1 clauses, 
then all possible level 2 clauses, etc. 

§  complete but very inefficient 
 

Resolution Refutation Strategies 

•  Input Resolution 
§  P and Q can be resolved if at least one is from 

the set of original clauses, i.e., KB and ¬ query 
§  proof trees have a single "spine" (see Fig. 9.11) 
§  Modus Ponens is a form of input resolution since 

each step is used to generate a new fact 
§  complete for FOL KB with only Horn clauses 



Resolution Refutation Strategies 

•  Linear Resolution 
§  a slight generalization of input resolution 
§  P and Q can be resolved if: 

•  at least 1 is from the set of original clauses  
•  or P must be an ancestor of Q in the proof tree 

§  complete 

Method 4:  Chaining with Horn Clauses 
•  Resolution is more powerful than we need for many 

practical situations 
•  A weaker form:  Horn clauses 

§  A Horn clause is a disjunction of literals with at 
most one positive 

¬R ∨ P ∨ Q   no 
¬R ∨ ¬ P ∨ Q  yes 

 
§  KB = conjunction of Horn clauses 
§  What’s the big deal? 

¬R ∨ ¬ P ∨ Q 
≡    ¬(R ∧ P) ∨ Q 
≡   ? 

              

Horn Clauses 
¬R ∨ ¬P ∨ Q 
≡   ¬(R ∧ P) ∨ Q 
≡  (R ∧ P) ⇒ Q   Every rule in KB is in this form 
P   (special case, no negative literals): fact 
¬R ∨ ¬P   (special case, no positive literal): goal clause 

•  The big deal: 
§  KB easy for humans to read 
§  Natural forward chaining and backward chaining 

algorithms; proof easy for humans to read 
§  Can decide entailment with Horn clauses in time 

linear with KB size 
•  But … 

§  Can only ask atomic queries 

              

Horn  Clauses 

Only 1 rule of inference needed: 
 

 Generalized Modus Ponens 
 

P, Q, (P ∧ Q) ⇒ R 
           R 

              



Forward Chaining 
•  “Apply” any rule whose premises are satisfied in the KB 
•  Add its conclusion to the KB until query is derived 

KB: 

query:  Q 

                                  
                                 
                                 
                                
                                
                                   
                                  
 

•  Forward chaining with Horn clause KB is complete 
              

Forward  Chaining 
1.  P ⇒ Q 
2.  L ∧ M ⇒ P 
3.  B ∧ L ⇒ M 
4.  A ∧ P ⇒ L 
5.  A ∧ B ⇒ L 
6.  A 
7.  B 
8.  L   GMP(5,6,7) 
9.  M  GMP(3,7,8) 
10.  P   GMP(2,8,9) 
11.   Q   GMP(1,10) 

              

Backward Chaining 
•  Forward chaining problem: can generate a lot of 

irrelevant conclusions 
§  Search forward, start state = KB, goal test = state 

contains query 
•  Backward chaining 

§  Work backwards from goal to premises 
§  Find all implications of the form  

(…) ⇒ query 
§  Prove all the premises of one of these implications 
§  Avoid loops:  check if new subgoal is already on 

the goal stack 
§  Avoid repeated work:  check if new subgoal 

1.  Has already been proved true, or 
2.  Has already failed 

              

Backward  Chaining 

1.  P ⇒ Q 
2.  L ∧ M ⇒ P 
3.  B ∧ L ⇒ M 
4.  A ∧ P ⇒ L 
5.  A ∧ B ⇒ L 
6.  A 
7.  B 
8.  Q   Goal 
9.  P   Subgoal(1,8) 
10.  L ∧ M  Subgoal(2,9) 
11.   L   Subgoal(10) 
12.  A ∧ B  Subgoal(5,11) 
13.  A   True(6) 
14.  B   True(7) 
15.  L   True(5,13,14) 
16.  M   True(14,15) 
17.  P   True(15,16) 
18.  Q   True(1,17) 

              



Backward Chaining 

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

              

OR 

AND 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 



Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 



Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Backward Chaining 

              

P ⇒ Q 
L ∧ M ⇒ P 
B ∧ L ⇒ M 
A ∧ P ⇒ L 
A ∧ B ⇒ L 
A 
B 

Forward vs. Backward Chaining 

•  Forward chaining is data-driven 
§  May perform lots of work irrelevant to the goal 

•  Backward chaining is goal-driven 
§  Appropriate for problem solving 
§  Time complexity can be much less than linear in 

size of KB 
•  Some form of bi-directional search may be even 

better 

              

Prolog:  A Logic Programming Language 
•  A Program = 

§  a set of logic sentences as Horn clauses 
•  called the database (DB), i.e., the KB 
•  ordered by programmer 

§  executed by specifying a query to be 
proved 

•  uses backward-chaining 
•  uses depth-first search on the ordered facts 

and rules 
•  searches until a solution is found 



Prolog Basic Syntax 
•  Database: 

§  Fact: a positive literal 
 FOL: F(x)   in Prolog: F(X). 
 initial capital variables universally quantified 
§ Rules: ≥ 1 negative and 1 positive literals 
 if antecedent(s) then consequent  
 FOL: A1 ∧ A2 ∧ … ∧ An ⇒ C in Prolog: C :-  A1, A2, … , An. 

• Query: 
§  FOL: Q1 ∧ Q2 ∧ … ∧ Qn   in Prolog: ?- Q1, Q2, … , Qn. 
§  query variables implicitly existentially quantified 

Some Applications of PL 

•  Puzzles (e.g., Sudoku) 
•  Scheduling problems 
•  Layout problems 
•  Boolean circuit analysis 
•  Automated theorem provers 
•  Legal reasoning systems 

Weaknesses of PL 
•  PL is not a very expressive language 

•  Can’t express relations over a group of things, e.g., 
“All triangles have 3 sides” 

•  Only deals with “facts,” e.g., “It is raining,” but does 
not allow variables where you can express things 
about them without naming them explicitly.  For 
example, “When you paint a block with green paint, it 
becomes green.” 

•  You can’t quantify things, e.g., talk about all of them, 
some of them, none of them, without naming them 
explicitly 

      

Problems with Propositional Logic 

•  Consider the game “Minesweeper” on a 10 x 10 field 
with only one land mine 

 
 
 
 
 
 
•  How do you express the knowledge, with Propositional 

Logic, that the squares adjacent to the land mine will 
display the number 1? 

              



Problems with Propositional Logic 
•  Consider the game “Minesweeper” on a 10 x 10 field 

with only one land mine 
 
 
 
•  How do you express the knowledge, with Propositional 

Logic, that the squares adjacent to the land mine will 
display the number 1? 

•  Intuitively with a rule like  
Landmine(x,y) ⇒ Number1(Neighbors(x,y)) 

 but Propositional Logic cannot do this 

              

Problems with Propositional Logic 
•  Propositional Logic has to say, e.g. for cell (3, 4): 

§  Landmine_3_4  ⇒ Number1_2_3 
§  Landmine_3_4  ⇒ Number1_2_4 
§  Landmine_3_4  ⇒ Number1_2_5 
§  Landmine_3_4  ⇒ Number1_3_3 
§  Landmine_3_4  ⇒ Number1_3_5 
§  Landmine_3_4  ⇒ Number1_4_3 
§  Landmine_3_4  ⇒ Number1_4_4 
§  Landmine_3_4  ⇒ Number1_4_5 

§  And similarly for each of Landmine_1_1, 
Landmine_1_2, Landmine_1_3, …, Landmine_10_10 

•  Difficult to express large domains concisely 
•  Don’t have objects and relations 
•  First-Order Logic is a powerful upgrade 

              

Other Logic Systems 

Logics are characterized by what they commit to as "primitives" 

Logic What Exists in World Knowledge States 
Propositional facts true/false/unknown 
First-Order facts, objects, relations true/false/unknown 
Temporal facts, objects, 

relations, times 
true/false/unknown 

Probability Theory facts degree of belief 0..1 
Markov facts, objects, relations degree of belief 0..1 

First-Order Logic  (FOL) 

Also known as First-Order Predicate Calculus (FOPC) 

•  Constants:  Bob, 2, Madison, … 
•  Functions: Income, Address, Sqrt, … 
•  Predicates:  Sister, Teacher, ≤, … 
•  Variables:  x, y, a, b, c, … 
•  Connectives:  ∧  ∨  ¬  ⇒  ⇔ 
•  Equality:   = 
•  Quantifiers:  ∀  ∃



FOL Syntax:  Quantifiers 

Universal quantifier:  ∀<variable> <sentence> 
 

• Means the sentence is true for all values of x in 
the domain of variable x 

•  Main connective typically ⇒  forming if-then rules

§ All humans are mammals  becomes in FOL:  
∀x Human(x) ⇒ Mammal(x) 

        i.e., for all x, if x is a human then x is a mammal 
§ Mammals must have fur  becomes in FOL:  

∀x Mammal(x)⇒ HasFur(x) 
        for all x, if x is a mammal then x has fur 

FOL Syntax:  Quantifiers 

Existential quantifier: ∃<variable> <sentence> 
•  Means the sentence is true 

for some value of x in the domain of variable x 

•  Main connective is typically ∧
§ Some humans are old            becomes in FOL:  
§  ∃x Human(x) ∧ Old(x) 
    there exist an x such that x is a human and x is old 
§ Mammals may have arms.     becomes in FOL:  
§  ∃x Mammal(x) ∧ HasArms(x) 
    there exist an x such that x is a mammal and x has arms 

Fun with Sentences 

•  Good people always have friends.
could mean: All good people have friends.
∀x (Person(x) ∧ Good(x)) ⇒ ∃y(Friend(x,y)) 

 
•  Busy people sometimes have friends.

 could mean: Some busy people have friends.
∃x Person(x) ∧ Busy(x) ∧ ∃y(Friend(x,y)) 

 
•  Bad people never have friends.

 could mean: Bad people have no friends.
∀x (Person(x) ∧ Bad(x)) ⇒ ¬∃y(Friend(x,y)) 
 or equivalently: No bad people have friends.

¬∃x Person(x) ∧ Bad(x) ∧ ∃y(Friend(x,y)) 

Fun with Sentences 

l  There is exactly one shoe.
∃x Shoe(x) ∧ ∀ y(Shoe(y) ⇒ (x=y)) 
 

l  There are exactly two shoes.
∃x,y Shoe(x) ∧ Shoe(y) ∧ ¬(x=y) ∧  
                           ∀z (Shoe(z) ⇒ (x=z) ∨ (y=z)) 

            



What You Should Know 

•  A lot of terms 
•  Use truth tables (inference by enumeration) 
•  Natural deduction proofs 
•  Conjuctive Normal Form (CNF) 
•  Resolution Refutation algorithm and proofs 
•  Horn clauses 
•  Forward chaining algorithm 
•  Backward chaining algorithm 

              

That’s All Folks! 


