
Propositional Logic

Reading: Chapter 7.1, 7.3 – 7.5

[Partially based on slides from Jerry Zhu, Louis Oliphant and Andrew Moore]

Logic
•  If a problem domain can be represented formally, then

a decision maker can use logical reasoning to make
rational decisions

•  Many types of logic
§  Propositional Logic (Boolean logic)
§  First-Order Logic (aka first-order predicate calculus)
§  Non-Monotonic Logic
§  Markov Logic

•  A logic includes:
§  syntax: what is a correctly-formed sentence?
§  semantics: what is the meaning of a sentence?
§  Inference procedure (reasoning, entailment): what

sentence logically follows given knowledge?

Propositional Logic

•  A symbol in Propositional Logic (PL) is a symbolic
variable whose value must be either True or False,
and which stands for a natural language statement
that could be either true or false

§  A = “Smith has chest pain”
§  B = “Smith is depressed”
§  C = “It is raining”

((¬P ∨ ((True ∧ R) ⇔ Q)) ⇒ S)) well formed (“wff” or “sentence”)

(¬(P ∨ Q) ∧ ⇒ S) not well formed

Propositional Logic Syntax
Sentence → AtomicSentence | ComplexSentence
AtomicSentence → True | False | Symbol
Symbol → P | Q | R | . . .
ComplexSentence → ¬ Sentence

 | (Sentence ∧ Sentence)
 | (Sentence ∨ Sentence)
 | (Sentence ⇒ Sentence)
 | (Sentence ⇔ Sentence)

BNF (Backus-Naur Form) grammar for Propositional Logic

((¬P ∨ ((True ∧ R) ⇔ Q)) ⇒ S)

Means True

Means “Not”
Means “Or” -- disjunction

Means “And” -- conjunction

Means “iff” -- biconditional

Means “if-then”
implication

() control the order of operations

Propositional symbols must be specified

Propositional Logic Syntax

Propositional Logic Syntax

•  Precedence (from highest to lowest):

¬, ∧, ∨, ⇒, ⇔

•  If the order is clear, you can leave off parentheses

¬P ∨ True ∧ R ⇔ Q ⇒ S ok (though not recommended)
P ⇒ Q ⇒ S not ok

Semantics
•  An interpretation is a complete True / False assignment to

all propositional symbols
§  Example symbols: P means “It is hot”, Q means “It is

humid”, R means “It is raining”
§  There are 8 interpretations (TTT, ..., FFF)

•  The semantics (meaning) of a sentence is the set of
interpretations in which the sentence evaluates to True

•  Example: the semantics of the sentence P ∨ Q is the set of
6 interpretations:
§  P=True, Q=True, R=True or False
§  P=True, Q=False, R=True or False
§  P=False, Q=True, R=True or False

•  A model of a set of sentences is an interpretation in which
all the sentences are true

Evaluating a Sentence under an Interpretation
•  Calculated using the definitions of all the connectives,

recursively

•  Pay attention to ⇒
§  “5 is even implies 6 is odd” is True!
§  If P is False, regardless of Q, P ⇒ Q is True
§  No causality needed: “5 is odd implies the Sun is a

star” is True

Understanding “⇒”
•  This is an operator. Although we call it “implies” or

“implication,” do not try to understand its semantic
form from the name. We could have called it “foo”
instead and still defined its semantics the same way.

•  A ⇒ B “means” A is sufficient but not necessary to
make B true

•  Example:
§  Let A be “has a cold” and B be “drink water”
§  A ⇒ B can be interpreted as “should drink water”

when “has a cold.”
§  However, you can drink water even when you do

not have a cold. Thus A ⇒ B is still true when A is
not true.

P Q R ¬P Q ∧ R ¬P ∨ (Q ∧ R) Wff

F F F T F T F
F F T T F T F
F T F T F T T
F T T T T T T
T F F F F F T
T F T F F F T
T T F F F F T
T T T F T T T

Example
(¬P ∨ (Q ∧ R)) ⇒ Q

Satisfiable: a sentence that is true under some interpretation(s)
Deciding satisfiability of a sentence is NP-complete

Example
((P ∧ R) ⇒ Q) ∧ P ∧ R ∧ ¬Q

Unsatisfiable: a sentence that is false under all interpretations
Also called inconsistent or a contradiction

P Q R P ⇒ Q P ∧ ¬Q Wff
F F F T F T
F F T T F T
F T F T F T
F T T T F T
T F F F T T
T F T F T T
T T F T F T
T T T T F T

Example
(P ⇒ Q) ∨ (P ∧ ¬Q)

Valid: a sentence that is true under all interpretations
Also called a tautology

Knowledge Base (KB)
•  A knowledge base, KB, is a set of sentences

Example KB:
§  ChuckGivingLecture ⇔ (TodayIsTuesday ∨

TodayIsThursday)
§  ¬ChuckGivingLecture

•  It is equivalent to a single long sentence: the
conjunction of all sentences
§  (ChuckGivingLecture ⇔ (TodayIsTuesday ∨

TodayIsThursday)) ∧ ¬ChuckGivingLecture

•  A model of a KB is an interpretation in which all
sentences in KB are true

Entailment

•  Entailment is the relation of a sentence β logically
following from other sentences α (e.g., KB)

α ⊨ β

•  α ⊨ β if and only if, in every interpretation in which α is
true, β is also true; i.e., whenever α is true, so is β;
all models of α and also models of β

•  Deduction theorem: α ⊨ β if and only if α ⇒ β is valid
(always true)

•  Proof by contradiction (refutation, reductio ad
absurdum): α ⊨ β if and only if α ∧ ¬β is unsatisfiable

•  There are 2n interpretations to check, if KB has n
symbols

Entailment
•  Entailment is the relation of a sentence β logically

following from other sentences α (e.g., the KB)

α ⊨ β

•  α ⊨ β if and only if, in every interpretation in which α
is true, β is also true

β is true

All interpretations

α is true

Deductive Inference
•  Say you write a program that, according to you,

proves whether a sentence β is entailed by α
•  The thing your program does is called deductive

inference
•  We don’t trust your inference program (yet), so we

write things your program finds as

α ⊢ β
•  It reads “β is derived from α by your program”
•  What properties should your program have?

§  Soundness: the inference algorithm only derives
entailed sentences. That is, if α ⊢ β then α ⊨ β

§  Completeness: all entailment can be inferred.
That is, if α ⊨ β then α ⊢ β

Soundness and Completeness

•  Soundness says that any wff that follows deductively
from a set of axioms, KB, is valid (i.e., true in all
models)

•  Completeness says that all valid sentences (i.e., true
in all models of KB), can be proved from KB and
hence are theorems

Method 1: Inference by Enumeration

LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

QUERY: KB ⊨ β ?
 A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

NOTE: The computer doesn't
know the meaning
of the proposition symbols

So, all logically distinct cases
must be checked to prove that
a sentence can be derived
from KB

Also called Model Checking or Truth Table Enumeration

Inference by Enumeration

LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

QUERY: KB ⊨ β ?
A∨C B∨ ¬C KB
false true false
true false false
false true false
true true true
true true true
true false false
true true true
true true true

Rows where all of
sentences in KB
are true are the
models of KB

 A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Inference by Enumeration

LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

QUERY: KB ╞ β ?

A∨C B∨ ¬C KB
false true false
true false false
false true false
true true true
true true true
true false false
true true true
true true true

β is entailed by KB
if all models of KB
are models of β,
i.e., all rows
where KB is true,
β is also true

 A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

A∨B
false
false
true
true
true
true
true
true

YES!

In other words:
KB ⇒ β is valid

KB⇒β
 true
 true
 true
 true
 true
 true
 true
 true

Inference by Enumeration

•  Using inference by enumeration to build a complete
truth table in order to determine if a sentence is
entailed by KB is a complete inference algorithm for
Propositional Logic

•  But very slow: takes exponential time

Method 2: Natural Deduction using
Sound Inference Rules

Goal: Define a more efficient algorithm than
enumeration that uses a set of inference rules
to incrementally deduce new sentences that are
true given the initial set of sentences in KB, plus
uses all logical equivalences

Logical Equivalences

You can use these equivalences to derive or modify
sentences

•  Modus Ponens (Latin for “mode that affirms”)

•  And-Elimination

β

Sound Inference Rules

α ∧ β
α

Note: Prove that an inference rule
is sound by using a truth table, e.g.:

P Q P P⇒Q P ∧
(P⇒Q) Q

(P ∧
(P⇒Q))
⇒ Q

T T T T T T T
T F T F F F T
F T F T F T T
F F F T F F T

α ⇒ β, α

Some Sound Inference Rules

•  Implication-Elimination, IE
(Modus Ponens, MP)

α⇒β, α
β

l  And-Elimination, AE

l  And-Introduction, AI

l  Or-Introduction, OI

α1 ∧ α2 ∧ … ∧ αn
αi

α1, α2, … , αn
α1 ∧ α2 ∧ … ∧ αn

αi
α1 ∨ α2 ∨ … ∨ αn

l  Double-Negation Elimination,
DNE

¬ ¬ α
α

Inference Rules

•  Each inference rule formalizes the idea that
 “A infers B” (A ⊢ B) in terms of
 “logically follows” (A ⊨ B)

•  Doesn’t say anything about deducibility – just says

for each interpretation that makes A true, that
interpretation also makes B true

Question

What’s the difference between

≡ (logical equivalence)
⊨ (entails)
⊢ (derived from; infers)

Natural Deduction = Constructing a Proof

•  A Proof is a sequence of inference steps that leads
from α (i.e., KB) to β (i.e., query)

•  This is a search problem!

KB:
1.  (P ∧ Q) ⇒ R
2.  (S ∧ T) ⇒ Q
3.  S
4.  T
5.  P

Query:
 R

Proof by Natural Deduction

1.  S Premise (i.e., given sentence in KB)
2.  T Premise
3.  S ∧ T Conjunction(1, 2) (And-Introduction)
4.  (S ∧ T) ⇒ Q Premise
5.  Q Modus Ponens(3, 4)
6.  P Premise
7.  P ∧ Q Conjunction(5, 6)
8.  (P ∧ Q) ⇒ R Premise
9.  R Modus Ponens(7, 8) (Last line is query sentence)

Monotonicity Property

•  Note that natural deduction relies on the
monotonicity property of Propositional Logic:

 Deriving a new sentence and adding it to KB does
 NOT affect what can be entailed from the original KB

•  Hence we can incrementally add new true

sentences that are derived in any order

•  Once something is proved true, it will remain true

Proof by Natural Deduction

KB:
1. ChuckGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
2. ¬ ChuckGivingLecture

Query:
 ¬ TodayIsTuesday

Proof

KB:
1. ChuckGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
2. ¬ ChuckGivingLecture

3. (ChuckGivingLecture ⇒ (TodayIsTuesday ∨
TodayIsThursday)) ∧ ((TodayIsTuesday ∨ TodayIsThursday) ⇒
ChuckGivingLecture) iff/biconditional-elimination to 1
4. (TodayIsTuesday ∨ TodayIsThursday) ⇒ ChuckGivingLecture
and-elimination to 3
5. ¬ ChuckGivingLecture ⇒ ¬(TodayIsTuesday ∨
TodayIsThursday) contraposition to 4
6. ¬(TodayIsTuesday ∨ TodayIsThursday) Modus Ponens 2,5
7. ¬TodayIsTuesday ∧ ¬TodayIsThursday de Morgan to 6
8. ¬ TodayIsTuesday and-elimination to 7

Resolution Rule of Inference

•  Resolution Rule of Inference

•  Examples

A
B B,A ¬∨

FEDCB
FEA D,CBA

∨¬∨∨¬∨
∨¬∨¬∨¬∨∨

γα
γβ β,α

∨
∨¬∨

called “unit resolution”

Resolution

•  Take any two “clauses” where one contains some
symbol, and the other contains its complement
(negative)

P ∨ Q ∨ R ¬Q ∨ S ∨ T

•  Merge (resolve) them, by throwing away the symbol
and its complement, to obtain their resolvent clause:

P ∨ R ∨ S ∨ T

•  If two clauses resolve and there’s no symbol left, you
have derived False, aka the empty clause

Method 3: Resolution Refutation

•  Show KB ⊨ α by proving that KB ∧ ¬α is
unsatsifiable, i.e., deducing False from KB ∧ ¬α

•  Your algorithm can use all the logical equivalences to
derive new sentences, plus:

•  Resolution rule: a single inference rule
§  Sound: only derives entailed sentences
§  Complete: can derive any entailed sentence

•  Resolution is refutation complete:

if KB ⊨ β, then KB ∧ ¬ β ⊢ False
§  But the sentences need to be preprocessed into a

special form
§  But all sentences can be converted into this form

Resolution Refutation Algorithm

1. Add negation of query to KB
2. Pick 2 sentences that haven’t been used before and

can be used with the Resolution Rule of inference
3. If none, halt and answer that the query is NOT

entailed by KB
4. Compute resolvent and add it to KB
5. If False in KB

§  Then halt and answer that the query IS entailed
by KB

§  Else Goto 2

Conjunctive Normal Form (CNF)

1.  Replace all ⇔ using iff/biconditional elimination
•  α ⇔ β ≡ (α ⇒ β) ∧ (β ⇒ α)

2.  Replace all ⇒ using implication elimination
•  α ⇒ β ≡ ¬α ∨ β

3.  Move all negations inward using
•  double-negation elimination

¬(¬α) ≡ α
•  de Morgan's rule

¬(α ∨ β) ≡ ¬α ∧ ¬β
¬(α ∧ β) ≡ ¬α ∨ ¬β

4.  Apply distributivity of ∨ over ∧
•  α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) + 1 more

Convert Sentence into CNF

A ⇔ (B ∨ C) starting sentence

(A ⇒ (B ∨ C)) ∧ ((B ∨ C) ⇒ A) iff/biconditional elimination

(¬A ∨ B ∨ C) ∧ (¬(B ∨ C) ∨ A) implication elimination

(¬A ∨ B ∨ C) ∧ ((¬B ∧ ¬C) ∨ A) move negations inward

(¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A) distribute ∨ over ∧

called a “clause”

Resolution Refutation Steps

•  Given KB and β (query)
•  Add ¬ β to KB, and convert all sentences to CNF
•  Show this leads to False (aka “empty clause”). Proof

by contradiction

•  Example KB:
§  A ⇔ (B ∨ C)
§  ¬A

•  Example query: ¬B

Resolution Refutation Preprocessing

•  Add ¬β to KB, and convert to CNF:

a1: ¬A ∨ B ∨ C
a2: ¬B ∨ A
a3: ¬C ∨ A
b: ¬A

c: B

•  Want to reach goal: False (empty clause)

Resolution Refutation Example

a1: ¬A ∨ B ∨ C
a2: ¬B ∨ A
a3: ¬C ∨ A
b: ¬A

c: B

Step 1: resolve a2, c: A

Step 2: resolve above and b: empty clause / false

Example

•  Given:
§  P ∨ Q
§  P ⇒ R
§  Q ⇒ R

•  Prove: R

Example
•  Given:

§  (P ⇒ Q) ⇒ Q
§  (P ⇒ P) ⇒ R
§  (R ⇒ S) ⇒ ¬(S ⇒ Q)

•  Prove: R

Example

•  Given:
§  P
§  ¬P

•  Prove: R

Efficiency of the Resolution Refutation
Algorithm

•  Run time can be exponential in the worst case
§  Often much faster

•  Factoring: if a new clause contains duplicates of the
same symbol, delete the duplicates

P ∨ R ∨ P ∨ T ≡ P ∨ R ∨ T
•  If a clause contains a symbol and its complement, the

clause is a tautology and is useless; it can be thrown
away
a1: (¬A ∨ B ∨ C)
a2: (¬B ∨ A)
Resolvent of a1 and a2 is: B ∨ C ∨ ¬B
Which is valid, so throw it away

Resolution Refutation Strategies

•  Resolution refutation proofs can be thought of as
search:
§  reversed construction of search tree (leaves to

root)
§  leaves are KB clauses and ¬ query
§  resolvent is new node with arcs to parent clauses
§  root is False clause

Resolution Refutation Strategies

•  Breadth-First
§  level 0 clauses: KB clauses and ¬ query
§  level k clauses: resolvents computed from 2

clauses:
•  one of which must be from level k-1
•  other from any earlier level

§  compute all possible level 1 clauses,
then all possible level 2 clauses, etc.

§  complete but very inefficient

Resolution Refutation Strategies

•  Input Resolution
§  P and Q can be resolved if at least one is from

the set of original clauses, i.e., KB and ¬ query
§  proof trees have a single "spine" (see Fig. 9.11)
§  Modus Ponens is a form of input resolution since

each step is used to generate a new fact
§  complete for FOL KB with only Horn clauses

Resolution Refutation Strategies

•  Linear Resolution
§  a slight generalization of input resolution
§  P and Q can be resolved if:

•  at least 1 is from the set of original clauses
•  or P must be an ancestor of Q in the proof tree

§  complete

Method 4: Chaining with Horn Clauses
•  Resolution is more powerful than we need for many

practical situations
•  A weaker form: Horn clauses

§  A Horn clause is a disjunction of literals with at
most one positive

¬R ∨ P ∨ Q no
¬R ∨ ¬ P ∨ Q yes

§  KB = conjunction of Horn clauses
§  What’s the big deal?

¬R ∨ ¬ P ∨ Q
≡ ¬(R ∧ P) ∨ Q
≡ ?

Horn Clauses
¬R ∨ ¬P ∨ Q
≡ ¬(R ∧ P) ∨ Q
≡ (R ∧ P) ⇒ Q Every rule in KB is in this form
P (special case, no negative literals): fact
¬R ∨ ¬P (special case, no positive literal): goal clause

•  The big deal:
§  KB easy for humans to read
§  Natural forward chaining and backward chaining

algorithms; proof easy for humans to read
§  Can decide entailment with Horn clauses in time

linear with KB size
•  But …

§  Can only ask atomic queries

Horn Clauses

Only 1 rule of inference needed:

 Generalized Modus Ponens

P, Q, (P ∧ Q) ⇒ R
 R

Forward Chaining
•  “Apply” any rule whose premises are satisfied in the KB
•  Add its conclusion to the KB until query is derived

KB:

query: Q

•  Forward chaining with Horn clause KB is complete

Forward Chaining
1.  P ⇒ Q
2.  L ∧ M ⇒ P
3.  B ∧ L ⇒ M
4.  A ∧ P ⇒ L
5.  A ∧ B ⇒ L
6.  A
7.  B
8.  L GMP(5,6,7)
9.  M GMP(3,7,8)
10.  P GMP(2,8,9)
11.   Q GMP(1,10)

Backward Chaining
•  Forward chaining problem: can generate a lot of

irrelevant conclusions
§  Search forward, start state = KB, goal test = state

contains query
•  Backward chaining

§  Work backwards from goal to premises
§  Find all implications of the form

(…) ⇒ query
§  Prove all the premises of one of these implications
§  Avoid loops: check if new subgoal is already on

the goal stack
§  Avoid repeated work: check if new subgoal

1.  Has already been proved true, or
2.  Has already failed

Backward Chaining

1.  P ⇒ Q
2.  L ∧ M ⇒ P
3.  B ∧ L ⇒ M
4.  A ∧ P ⇒ L
5.  A ∧ B ⇒ L
6.  A
7.  B
8.  Q Goal
9.  P Subgoal(1,8)
10.  L ∧ M Subgoal(2,9)
11.   L Subgoal(10)
12.  A ∧ B Subgoal(5,11)
13.  A True(6)
14.  B True(7)
15.  L True(5,13,14)
16.  M True(14,15)
17.  P True(15,16)
18.  Q True(1,17)

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

OR

AND

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Backward Chaining

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

Forward vs. Backward Chaining

•  Forward chaining is data-driven
§  May perform lots of work irrelevant to the goal

•  Backward chaining is goal-driven
§  Appropriate for problem solving
§  Time complexity can be much less than linear in

size of KB
•  Some form of bi-directional search may be even

better

Prolog: A Logic Programming Language
•  A Program =

§  a set of logic sentences as Horn clauses
•  called the database (DB), i.e., the KB
•  ordered by programmer

§  executed by specifying a query to be
proved

•  uses backward-chaining
•  uses depth-first search on the ordered facts

and rules
•  searches until a solution is found

Prolog Basic Syntax
•  Database:

§  Fact: a positive literal
 FOL: F(x) in Prolog: F(X).
 initial capital variables universally quantified
§ Rules: ≥ 1 negative and 1 positive literals
 if antecedent(s) then consequent
 FOL: A1 ∧ A2 ∧ … ∧ An ⇒ C in Prolog: C :- A1, A2, … , An.

• Query:
§  FOL: Q1 ∧ Q2 ∧ … ∧ Qn in Prolog: ?- Q1, Q2, … , Qn.
§  query variables implicitly existentially quantified

Some Applications of PL

•  Puzzles (e.g., Sudoku)
•  Scheduling problems
•  Layout problems
•  Boolean circuit analysis
•  Automated theorem provers
•  Legal reasoning systems

Weaknesses of PL
•  PL is not a very expressive language

•  Can’t express relations over a group of things, e.g.,
“All triangles have 3 sides”

•  Only deals with “facts,” e.g., “It is raining,” but does
not allow variables where you can express things
about them without naming them explicitly. For
example, “When you paint a block with green paint, it
becomes green.”

•  You can’t quantify things, e.g., talk about all of them,
some of them, none of them, without naming them
explicitly

Problems with Propositional Logic

•  Consider the game “Minesweeper” on a 10 x 10 field
with only one land mine

•  How do you express the knowledge, with Propositional

Logic, that the squares adjacent to the land mine will
display the number 1?

Problems with Propositional Logic
•  Consider the game “Minesweeper” on a 10 x 10 field

with only one land mine

•  How do you express the knowledge, with Propositional

Logic, that the squares adjacent to the land mine will
display the number 1?

•  Intuitively with a rule like
Landmine(x,y) ⇒ Number1(Neighbors(x,y))

 but Propositional Logic cannot do this

Problems with Propositional Logic
•  Propositional Logic has to say, e.g. for cell (3, 4):

§  Landmine_3_4 ⇒ Number1_2_3
§  Landmine_3_4 ⇒ Number1_2_4
§  Landmine_3_4 ⇒ Number1_2_5
§  Landmine_3_4 ⇒ Number1_3_3
§  Landmine_3_4 ⇒ Number1_3_5
§  Landmine_3_4 ⇒ Number1_4_3
§  Landmine_3_4 ⇒ Number1_4_4
§  Landmine_3_4 ⇒ Number1_4_5

§  And similarly for each of Landmine_1_1,
Landmine_1_2, Landmine_1_3, …, Landmine_10_10

•  Difficult to express large domains concisely
•  Don’t have objects and relations
•  First-Order Logic is a powerful upgrade

Other Logic Systems

Logics are characterized by what they commit to as "primitives"

Logic What Exists in World Knowledge States
Propositional facts true/false/unknown
First-Order facts, objects, relations true/false/unknown
Temporal facts, objects,

relations, times
true/false/unknown

Probability Theory facts degree of belief 0..1
Markov facts, objects, relations degree of belief 0..1

First-Order Logic (FOL)

Also known as First-Order Predicate Calculus (FOPC)

•  Constants: Bob, 2, Madison, …
•  Functions: Income, Address, Sqrt, …
•  Predicates: Sister, Teacher, ≤, …
•  Variables: x, y, a, b, c, …
•  Connectives: ∧ ∨ ¬ ⇒ ⇔
•  Equality: =
•  Quantifiers: ∀ ∃

FOL Syntax: Quantifiers

Universal quantifier: ∀<variable> <sentence>

• Means the sentence is true for all values of x in
the domain of variable x

•  Main connective typically ⇒ forming if-then rules

§ All humans are mammals becomes in FOL:
∀x Human(x) ⇒ Mammal(x)

 i.e., for all x, if x is a human then x is a mammal
§ Mammals must have fur becomes in FOL:

∀x Mammal(x)⇒ HasFur(x)
 for all x, if x is a mammal then x has fur

FOL Syntax: Quantifiers

Existential quantifier: ∃<variable> <sentence>
•  Means the sentence is true

for some value of x in the domain of variable x

•  Main connective is typically ∧
§ Some humans are old becomes in FOL:
§  ∃x Human(x) ∧ Old(x)
 there exist an x such that x is a human and x is old
§ Mammals may have arms. becomes in FOL:
§  ∃x Mammal(x) ∧ HasArms(x)
 there exist an x such that x is a mammal and x has arms

Fun with Sentences

•  Good people always have friends.
could mean: All good people have friends.
∀x (Person(x) ∧ Good(x)) ⇒ ∃y(Friend(x,y))

•  Busy people sometimes have friends.

 could mean: Some busy people have friends.
∃x Person(x) ∧ Busy(x) ∧ ∃y(Friend(x,y))

•  Bad people never have friends.

 could mean: Bad people have no friends.
∀x (Person(x) ∧ Bad(x)) ⇒ ¬∃y(Friend(x,y))
 or equivalently: No bad people have friends.

¬∃x Person(x) ∧ Bad(x) ∧ ∃y(Friend(x,y))

Fun with Sentences

l  There is exactly one shoe.
∃x Shoe(x) ∧ ∀ y(Shoe(y) ⇒ (x=y))

l  There are exactly two shoes.
∃x,y Shoe(x) ∧ Shoe(y) ∧ ¬(x=y) ∧
 ∀z (Shoe(z) ⇒ (x=z) ∨ (y=z))

What You Should Know

•  A lot of terms
•  Use truth tables (inference by enumeration)
•  Natural deduction proofs
•  Conjuctive Normal Form (CNF)
•  Resolution Refutation algorithm and proofs
•  Horn clauses
•  Forward chaining algorithm
•  Backward chaining algorithm

That’s All Folks!

