

Building a tree with the artificial training set • Suppose we build a full tree (we always split until base case 2) Root 25% of these leaf node labels will be corrupted

In our artificial example

- Suppose someone generates a test set according to the same method.
- The test set is identical, except that some of the y's will be different.
- Some y's that were corrupted in the training set will be uncorrupted in the testing set.
- Some y's that were uncorrupted in the training set will be corrupted in the test set.

Andrew W. Moore

Training set error for our artificial tree

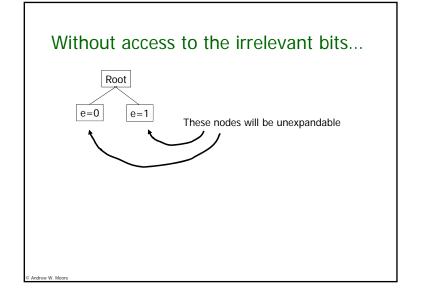
All the leaf nodes contain exactly one record and so...

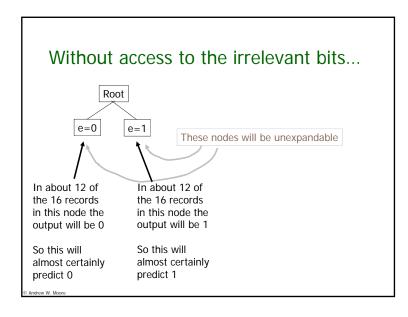
We would have a training set error of zero

C Andrew W Moo

Testing the tree with the test set

	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine

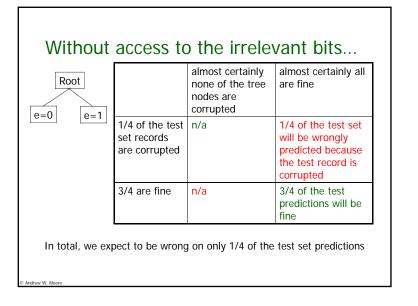

In total, we expect to be wrong on 3/8 of the test set predictions


What's this example shown us?

- This explains the discrepancy between training and test set error
- But more importantly... ...it indicates there's something we should do about it if we want to predict well on future data.

Andrew W. Moor

• Let's not look at the irrelevant bits Output y = copy of e, except a random 25% of the records have y set to the opposite of e These bits are hidden | Spund | Sp



Overfitting

- Definition: If your machine learning algorithm fits noise (i.e. pays attention to parts of the data that are irrelevant) it is overfitting
- Fact (theoretical and empirical): If your machine learning algorithm is overfitting then it may perform less well on test set data

Andrew W. Moo

