
1

2/15/20061 ©2001 James D. Skrentny from notes by C. Dyer

Game Playing

Chapter 6

2/15/20062 ©2001 James D. Skrentny from notes by C. Dyer

Game Playing and AI

� Game playing (was?) thought to be
a good problem for AI research:
– game playing is non-trivial

� players need “human-like” intelligence
� games can be very complex (e.g., chess, go)
� requires decision making within limited time

– games usually are:
� well-defined and repeatable
� limited and accessible

– can directly compare humans and computers

2/15/20063 ©2001 James D. Skrentny from notes by C. Dyer

Game Playing and AI

Bridge, Poker,
Scrabble

what kinds of
games here?

not admissible,
imperfect info

Backgammon,
Monopoly

Checkers,
Chess, Go,
Othello

admissible,
perfect info

ChanceDeterministic

2/15/20064 ©2001 James D. Skrentny from notes by C. Dyer

Game Playing as Search

� Consider a two player board game:
– e.g., chess, checkers, tic-tac-toe
– board configuration: unique arrangement of "pieces"

� Representing board games as search problem:
– states: board configurations
– operators: legal moves
– initial state: current board configuration
– goal state: winning/terminal board configuration

2

2/15/20065 ©2001 James D. Skrentny from notes by C. Dyer

Game Tree Representation

X X X

X

…

OX OX
O
X

O

X

…

How can we handle this?

What's the new aspect
to the search problem?
There’s an opponent
we cannot control! X

O

X

X O

X

X O

X

O

X X

…

OX

X

2/15/20066 ©2001 James D. Skrentny from notes by C. Dyer

Complexity of Game Playing

� Assume the opponent’s moves can be
predicted given the computer's moves

� How complex would search be in this case?
– worst case: O(bd) branching factor, depth
– Tic-Tac-Toe: ~5 legal moves, max of 9 moves

� 59 = 1,953,125 states

– Chess: ~35 legal moves, ~100 moves per game
� bd ~ 35100 ~10154 states, “only” ~1040 legal states

� Common games produce enormous search trees

2/15/20067 ©2001 James D. Skrentny from notes by C. Dyer

Greedy Search
using an Evaluation Function

� An evaluation/utility function is used to map each
terminal state of the board to a number
corresponding to the value of that state to the
computer
– positive for winning
– negative for losing
– 0 for a draw
– typical values (lost to win):

� -∞∞∞∞ to +∞∞∞∞
� -1.0 to +1.0

2/15/20068 ©2001 James D. Skrentny from notes by C. Dyer

Greedy Search
using an Evaluation Function

� Expand the search tree to the terminal states
on each branch

� Evaluate utility of each terminal board configurati on
� Make the initial move that results in the board

configuration with the maximum value

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

EDB C

computer's possible moves

opponent's
possible moves

board evaluation from computer's perspective

A

terminal states

E
3

D
2

B
-5

C
9

A
9

3

2/15/20069 ©2001 James D. Skrentny from notes by C. Dyer

Greedy Search
using an Evaluation Function

� Assuming a reasonable search space,
what's the problem?
This ignores what the opponent might do!
Computer chooses C
Opponent chooses J and defeats computer

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

E
3

D
2

B
-5

C
9

computer's possible moves

opponent's
possible moves

board evaluation from computer's perspective

A
9

terminal states

2/15/200610 ©2001 James D. Skrentny from notes by C. Dyer

Minimax Principle

� Assuming the worst (i.e., opponent plays optimally):
– given there are two plays till the terminal states
– high utility numbers favor the computer

� computer should choose maximizing moves

– low utility numbers favor the opponent
� smart opponent chooses minimizing moves

2/15/200611 ©2001 James D. Skrentny from notes by C. Dyer

EDB C

A

Minimax Principle

� The computer assumes after it moves
the opponent will choose the minimizing move

E
1

D
0

B
-7

C
-6

A
1

� The computer chooses the best move considering
both its move and opponent’s optimal move

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

computer's possible moves

opponent's
possible moves

board evaluation from computer's perspective

terminal states

2/15/200612 ©2001 James D. Skrentny from notes by C. Dyer

Propagating Minimax Values
up the Game Tree

� Explore the tree to the terminal states
� Evaluate utility of the resulting board

configurations
� The computer makes a move to put the board in the

best configuration for it assuming the opponent
makes her best moves on her turn:
– start at the leaves
– assign value to the parent node as follows

� use minimum when children are opponent’s moves
� use maximum when children are computer's moves

4

2/15/200613 ©2001 James D. Skrentny from notes by C. Dyer

ED
0B C

R
0

N
4 O P

9
Q
-6

S
3

T
5

U
-7

V
-9

K MF G
-5

H
3

I
8 J L

2

W
-3

X
-5

A

Deeper Game Trees

� Minimax can be generalized to more than 2 moves
� Propagate /percolate values upwards in the tree

terminal states

O
-5

K
5

M
-7

F
4

J
9

E
-7

B
-5

C
3

A
3

oppponent
min

computer max

oppponent min

computer max

2/15/200614 ©2001 James D. Skrentny from notes by C. Dyer

General Minimax Algorithm

For each move by the computer:
1. Perform depth-first search to a terminal state
2. Evaluate each terminal state
3. Propagate upwards the minimax values

if opponent's move, propagate up minimum value of c hildren
if cumputer's move, propagate up maximum value of ch ildren

4. choose move with the maximum of minimax values of children

Note:
• minimax values gradually propagate upwards as DFS pr oceeds:

i.e., minimax values propagate up in “left-to-right” fashion
• minimax values for sub-tree propagate upwards “as we go,” so

only O(bd) nodes need to be kept in memory at any time

2/15/200615 ©2001 James D. Skrentny from notes by C. Dyer

Complexity of Minimax Algorithm

Assume all terminal states are at depth d

� Space complexity
depth-first search, so O(bd)

� Time complexity
given branching factor b, so O(bd)

� Time complexity is a major problem since computer
typically only has a finite amount of time to make a
move

2/15/200616 ©2001 James D. Skrentny from notes by C. Dyer

Complexity of Minimax Algorithm

� Direct Minimax algorithm is impractical in practice
– instead do depth-limited search to depth m
– but evaluation defined only for terminal states
– we need to know the value of non-terminal states

� Static board evaluator (SBE) functions use
heuristics to estimate the value of non-terminal
states

5

2/15/200617 ©2001 James D. Skrentny from notes by C. Dyer

Static Board Evaluator (SBE)

� A static board evaluation function is used to
estimate how good the current board configuration
is for the computer
– it reflects the computer’s chances of winning from

that node
– it must be easy to calculate from board configuration

� For example, Chess:
SBE = α * materialBalance +

β

* centerControl + γ * …
material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc.

2/15/200618 ©2001 James D. Skrentny from notes by C. Dyer

Static Board Evaluator (SBE)

� Typically, one subtracts how good it is for the
computer from how good it is for the opponent

� If the board evaluation is X for a player then its - X
for opponent

� Must agree with the utility function when calculate d
at terminal nodes

2/15/200619 ©2001 James D. Skrentny from notes by C. Dyer

Minimax Algorithm with SBE

int minimax (Node s, int depth, int limit) {
Vector v = new Vector();
if (isTerminal (s) || depth == limit) // base case

return(staticEvaluation (s));
else {

// do minimax on successors of s and save their valu es
while (s.hasMoreSuccessors())

v.addElement(minimax (s.getNextSuccessor(),depth+1,limit));
if (isComputersTurn (s))

return maxOf(v); // computer's move return max of children
else

return minOf (v); // opponent's move return min of children
}

}

2/15/200620 ©2001 James D. Skrentny from notes by C. Dyer

Minimax with Evaluation Functions

� Same as general Minimax, except
– only goes to depth m
– estimates using SBE function

� How would this algorithm perform at chess?
– if could look ahead ~4 pairs of moves (i.e., 8 ply)

would be consistently beaten by average players
– if could look ahead ~8 pairs as done in a typical PC,

is as good as human master

6

2/15/200621 ©2001 James D. Skrentny from notes by C. Dyer

Summary So Far

� Can't Minimax search to the end of the game
– if could, then choosing move is easy

� SBE isn't perfect at estimating/scoring
– if it was, just choose best move without searching

� Since neither is feasible for interesting games,
combine Minimax with SBE:
– Minimax to depth m
– use SBE to estimate/score board configuration

2/15/200622 ©2001 James D. Skrentny from notes by C. Dyer

Alpha-Beta Idea

� Some of the branches of the game tree won't be
taken if playing against an intelligent opponent

� Pruning can be used to ignore those branches
� Keep track of while doing DFS of game tree:

– maximizing level: alpha
� highest value seen so far
� lower bound on node's evaluation/score

– minimizing level: beta
� lowest value seen so far
� higher bound on node's evaluation/score

2/15/200623 ©2001 James D. Skrentny from notes by C. Dyer

Alpha-Beta Idea

� Pruning occurs:
– when maximizing :

if alpha ≥ parent's beta, stop expanding
opponent won't allow computer to take this route

– when minimizing :

if beta ≤ parent's alpha, stop expanding
computer shouldn't take this route

2/15/200624 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B

N
4

F G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A

Alpha-Beta Example

minimax(A,0,4)

max Call
Stack

A

AA α=

7

2/15/200625 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B

N
4

F G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(B,1,4)

max Call
Stack

A

BB β

=

B

min

2/15/200626 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B β
=

N
4

F G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(F,2,4)

max Call
Stack

A

FF α=

B

min

max

F

2/15/200627 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B β

=

N
4

F α=
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(N,3,4)

max Call
Stack

A

N
4

B

min

max

F

blue: terminal state

N

2/15/200628 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B β

=

N
4

F α=
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(F,2,4) is returned to

max
Call

Stack

A

alpha = 4 , maximum seen so far

B

min

max

F

blue: terminal state

Fα=4

8

2/15/200629 ©2001 James D. Skrentny from notes by C. Dyer

O

W
-3

B β

=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(O,3,4)

max
Call

Stack

A
B

min

max

F

blue: terminal state

O
min OOβ

=

2/15/200630 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=

W
-3

B β
=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(W,4,4)

max Call
Stack

A
B

min

max

F

blue: terminal state (depth limit)

O

W
-3

min

W

2/15/200631 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=

W
-3

B β

=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(O,3,4) is returned to

max Call
Stack

A

beta = -3 , minimum seen so far

B

min

max

F
O

min Oβ

=-3

2/15/200632 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

B β

=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(O,3,4) is returned to

max
Call

Stack

A

O's beta ≤≤≤≤ F's alpha: stop expanding O (alpha cut-off)

B

min

max

F
O

min

X
-5

9

2/15/200633 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

B β

=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

Why? Smart opponent will choose W or worse, thus O's upper bound is –3

So computer shouldn't choose O:-3 since N:4 is better

max
Call

Stack

A
B

min

max

F
O

min

2/15/200634 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

B β
=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(F,2,4) is returned to

max
Call

Stack

A
B

min

max

Fmin

X
-5

alpha not changed (maximizing)

2/15/200635 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

B β

=

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(B,1,4) is returned to

max
Call

Stack

A
B

min

max

min

X
-5

beta = 4 , minimum seen so far

Bβ

=4

2/15/200636 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=4

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(G,2,4)

max
Call

Stack

A
B

min

max

min

X
-5

G

G
-5

10

2/15/200637 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=4

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(B,1,4) is returned to

max
Call

Stack

A
B

min

max

min

X
-5

beta = -5 , updated to minimum seen so far

Bβ

=-5

2/15/200638 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

Bβ
=-5

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(A,0,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

alpha = -5 , maximum seen so far

Aα=-5

2/15/200639 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(C,1,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C

CC β

=

2/15/200640 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

C β

=

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(H,2,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C

H
3

H

11

2/15/200641 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

C β

=

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(C,1,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

beta = 3 , minimum seen so far

Aα=-5

C

Cβ

=3

2/15/200642 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

Bβ
=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ
=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(I,2,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C

I
8

I

2/15/200643 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(C,1,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

beta not changed (minimizing)

Aα=-5

C

2/15/200644 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8 J L

2

A α=

Alpha-Beta Example

minimax(J,2,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C
J

JJ α=

12

2/15/200645 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

J α=
L
2

A α=

Alpha-Beta Example

minimax(P,3,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C
J
P

P
9

2/15/200646 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

Bβ
=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ
=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

J α=
L
2

A α=

Alpha-Beta Example

minimax(J,2,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

alpha = 9

Aα=-5

C
J

Jα=9

2/15/200647 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

minimax(J,2,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

J's alpha ≥≥≥≥ C's beta: stop expanding J (beta cut-off)

Aα=-5

C
JQ

-6
R
0

2/15/200648 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

max
Call

Stack

A

min

max

min

X
-5

Aα=-5

C
J

Why? Computer should choose P or better, thus J's lower bound is 9;

so smart opponent won't take J:9 since H:3 is worse

13

2/15/200649 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

minimax(C,1,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

beta not changed (minimizing)

Aα=-5

C

2/15/200650 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

Bβ
=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ
=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

minimax(A,0,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

alpha = 3 , updated to maximum seen so far

Aα=-5
Aα=3

2/15/200651 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

minimax(D,1,4)

max
Call

Stack

A

min

max

min

X
-5

Aα=3

D

D
0

2/15/200652 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

minimax(A,0,4) is returned to

max
Call

Stack

A

min

max

min

X
-5

alpha not updated (maximizing)

Aα=3

14

2/15/200653 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

ED
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

How does the algorithm finish the search tree?

max
Call

Stack

A

min

max

min

X
-5

Aα=3

2/15/200654 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ
=-3

W
-3

Bβ
=-5

N
4

Fα=4
G
-5

X
-5

Eβ
=2

D
0

Cβ
=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

Kα=5 MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

E's beta ≤≤≤≤ A's alpha: stop expanding E (alpha cut-off)

max
Call

Stack

A

min

max

min

X
-5

Aα=3

2/15/200655 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

Eβ
=2

D
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

Kα=5 MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

max
Call

Stack

A

min

max

min

X
-5

Aα=3

Why? Smart opponent will choose L or worse, thus E's upper bound is 2;

so computer shouldn't choose E:2 since C:3 is better path

2/15/200656 ©2001 James D. Skrentny from notes by C. Dyer

blue: terminal state

Oβ

=-3

W
-3

Bβ

=-5

N
4

Fα=4
G
-5

X
-5

Eβ

=2
D
0

Cβ

=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

Kα=5 MH
3

I
8

Jα=9
L
2

A α=

Alpha-Beta Example

Result: Computer chooses move to C

max
Call

Stack

A

min

max

min

X
-5

Aα=3

15

2/15/200657 ©2001 James D. Skrentny from notes by C. Dyer

Effectiveness of Alpha-Beta Search

� Effectiveness depends on the order in which
successors are examined. More effective if best
are examined first

� Worst Case:
– ordered so that no pruning takes place
– no improvement over exhaustive search

� Best Case:
– each player’s best move is evaluated first (left-most)

� In practice, performance is closer to best
rather than worst case

2/15/200658 ©2001 James D. Skrentny from notes by C. Dyer

Effectiveness of Alpha-Beta Search

� In practice often get O(b(d/2)) rather than O(bd)

– same as having a branching factor of √b

since (√√√√b)d = b(d/2)

� For Example: Chess
– goes from b ~ 35 to b ~ 6

– permits much deeper search for the same time
– makes computer chess competitive with humans

2/15/200659 ©2001 James D. Skrentny from notes by C. Dyer

Dealing with Limited Time

� In real games, there is usually a time limit T on
making a move

� How do we take this into account?
– cannot stop alpha-beta midway and expect to use

results with any confidence
– so, we could set a conservative depth-limit that

guarantees we will find a move in time < T
– but then, the search may finish early and

the opportunity is wasted to do more search

2/15/200660 ©2001 James D. Skrentny from notes by C. Dyer

Dealing with Limited Time

� In practice, iterative deepening search (IDS) is us ed
– run alpha-beta search with an increasing depth limit
– when the clock runs out, use the solution found

for the last completed alpha-beta search
(i.e., the deepest search that was completed)

16

2/15/200661 ©2001 James D. Skrentny from notes by C. Dyer

The Horizon Effect

� Sometimes disaster lurks just beyond search depth
– computer captures queen, but a few moves later the

opponent checkmates (i.e., wins)
� The computer has a limited horizon ; it cannot

see that this significant event could happen
� How do you avoid catastrophic losses due to

“short-sightedness”?
– quiescence search
– secondary search

2/15/200662 ©2001 James D. Skrentny from notes by C. Dyer

The Horizon Effect

� Quiescence Search
– when evaluation frequently changing, look deeper

than limit
– look for a point when game “quiets down”

� Secondary Search
1. find best move looking to depth d
2. look k steps beyond to verify that it still looks good
3. if it doesn't, repeat Step 2 for next best move

2/15/200663 ©2001 James D. Skrentny from notes by C. Dyer

Book Moves

� Build a database of opening moves, end games,
and studied configurations

� If the current state is in the database, use
database:
– to determine the next move
– to evaluate the board

� Otherwise, do alpha-beta search

2/15/200664 ©2001 James D. Skrentny from notes by C. Dyer

More on Evaluation Functions

� The board evaluation function estimates how good
the current board configuration is for the computer
– it is a heuristic function of the features of the board

� i.e., function(f1, f2, f3, …, fn)

– the features are numeric characteristics
� feature 1, f1, is number of white pieces
� feature 2, f2, is number of black pieces
� feature 3, f3, is f1/f2

� feature 4, f4, is estimate of “threat” to white king
� etc.

17

2/15/200665 ©2001 James D. Skrentny from notes by C. Dyer

Linear Evaluation Functions

� A linear evaluation function of the features
is a weighted sum of f1 , f2 , f3 ,...
w1 * f1 + w2 * f2 + w3 * f3 + … + wn * fn

– where f 1, f2, …, fn are the features
– and w1, w2 , …, wn are the weights

� More important features get more weight

2/15/200666 ©2001 James D. Skrentny from notes by C. Dyer

Linear Evaluation Functions

� The quality of play depends directly on the quality
of the evaluation function

� To build an evaluation function we have to:
1. construct good features using expert knowledge
2. pick or learn good weights

2/15/200667 ©2001 James D. Skrentny from notes by C. Dyer

Learning the Weights in
a Linear Evaluation Function

� How could we learn these weights?
� Basic idea:

play lots of games against an opponent
– for every move (or game) look at the

error = true outcome - evaluation function
– if error is positive (underestimating),

adjust weights to increase the evaluation function
– if error is zero, do nothing
– if error is negative (overestimating),

adjust weights to decrease the evaluation function

2/15/200668 ©2001 James D. Skrentny from notes by C. Dyer

Examples of Algorithms
which Learn to Play Well

Checkers:
A. L. Samuel, “Some Studies in Machine Learning
using the Game of Checkers,” IBM Journal of Research
and Development, 11(6):601-617, 1959

� Learned by playing a copy of itself thousands of times
� Used only an IBM 704 with 10,000 words of RAM,

magnetic tape, and a clock speed of 1 kHz
� Successful enough to compete well at human

tournaments

18

2/15/200669 ©2001 James D. Skrentny from notes by C. Dyer

Examples of Algorithms
which Learn to Play Well

Backgammon:
G. Tesauro and T. J. Sejnowski, “A Parallel Network
that Learns to Play Backgammon,” Artificial Intelligence
39(3), 357-390, 1989

� Also learns by playing copies of itself
� Uses a non-linear evaluation function - a neural network
� Rated one of the top three players in the world

2/15/200670 ©2001 James D. Skrentny from notes by C. Dyer

Non-deterministic Games

� Some games involve chance, for example:
– roll of dice
– spin of game wheel
– deal of cards from shuffled deck

� How can we handle games with random elements?
� The game tree representation is extended

to include chance nodes:
1. computer moves
2. chance nodes
3. opponent moves

2/15/200671 ©2001 James D. Skrentny from notes by C. Dyer

Non-deterministic Games

The game tree representation is extended:

A α=

Bβ
=2

7 2

Cβ
=6

9 6

Dβ
=0

5 0

Eβ
=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

2/15/200672 ©2001 James D. Skrentny from notes by C. Dyer

Non-deterministic Games

� Weight score by the probabilities that move occurs
� Use expected value for move: sum of possible

random outcomes A α=

Bβ

=2

7 2

Cβ

=6

9 6

Dβ

=0

5 0

Eβ

=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

50/50
4

50/50
-2

19

2/15/200673 ©2001 James D. Skrentny from notes by C. Dyer

Non-deterministic Games

� Choose move with highest expected value

A α=

Bβ

=2

7 2

Cβ

=6

9 6

Dβ

=0

5 0

Eβ

=-4

8 -4

50/50
4

50/50
-2

.5 .5 .5 .5

max

chance

min

Aα=4

2/15/200674 ©2001 James D. Skrentny from notes by C. Dyer

Non-deterministic Games

� Non-determinism increases branching factor
– 21 possible rolls with 2 dice

� Value of lookahead diminishes: as depth increases
probability of reaching a given node decreases

� alpha-beta pruning less effective
� TDGammon:

– depth-2 search
– very good heuristic
– plays at world champion level

2/15/200675 ©2001 James D. Skrentny from notes by C. Dyer

Computers can play
GrandMaster Chess

“Deep Blue” (IBM)
� Parallel processor, 32 nodes
� Each node has 8 dedicated VLSI “chess chips”
� Can search 200 million configurations/second
� Uses minimax, alpha-beta, sophisticated heuristics

� It currently can search to 14 ply (i.e., 7 pairs of moves)
� Can avoid horizon by searching as deep as 40 ply
� Uses book moves

2/15/200676 ©2001 James D. Skrentny from notes by C. Dyer

Computers can play
GrandMaster Chess

Kasparov vs. Deep Blue, May 1997
� 6 game full-regulation chess match sponsored by ACM
� Kasparov lost the match 2 wins & 1 tie to 3 wins & 1 tie
� This was an historic achievement for computer chess

being the first time a computer became the best chess
player on the planet

� Note that Deep Blue plays by “brute force” (i.e., ra w
power from computer speed and memory); it uses
relatively little that is similar to human intuitio n and
cleverness

20

2/15/200677 ©2001 James D. Skrentny from notes by C. Dyer

Chess Rating Scale

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1966 1971 1976 1981 1986 1991 1997

Ratings

Garry Kasparov (current World Champion) Deep Blue

Deep Thought

2/15/200678 ©2001 James D. Skrentny from notes by C. Dyer

Status of Computers
in Other Deterministic Games

� Checkers/Draughts
– current world champion is Chinook
– can beat any human, (beat Tinsley in 1994)
– uses alpha-beta search, book moves (> 443 billion)

� Othello
– computers can easily beat the world experts

� Go
– branching factor b ~ 360 (very large!)
– $2 million prize for any system that can beat a world

expert

2/15/200679 ©2001 James D. Skrentny from notes by C. Dyer

Summary

� Game playing is best modeled as a search problem
� Search trees for games represent alternate

computer/opponent moves
� Evaluation functions estimate the quality of

a given board configuration for each player
- good for opponent
+ good for computer
0 neutral

2/15/200680 ©2001 James D. Skrentny from notes by C. Dyer

Summary

� Minimax is a procedure that chooses moves by
assuming that the opponent always choose their
best move

� Alpha-beta pruning is a procedure that can
eliminate large parts of the search tree enabling
the search to go deeper

� For many well-known games, computer algorithms
using heuristic search can match or out-perform
human world experts

21

2/15/200681 ©2001 James D. Skrentny from notes by C. Dyer

Conclusion

� Initially thought to be good area for AI research
� But brute force has proven to be better than

a lot of knowledge engineering
– more high-speed hardware issues than AI
– simplifying AI part enabled scaling up of hardware

� Still a good test-bed for computer learning

� Perhaps machines don't have to think like us?

