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Game Playing

Chapter 6
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Game Playing and AI

� Game playing (was?) thought to be
a good problem for AI research:
– game playing is non-trivial

� players need “human-like” intelligence
� games can be very complex (e.g., chess, go)
� requires decision making within limited time

– games usually are:
� well-defined and repeatable
� limited and accessible

– can directly compare humans and computers
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Game Playing and AI

Bridge, Poker, 
Scrabble

what kinds of 
games here?

not admissible, 
imperfect info

Backgammon, 
Monopoly

Checkers, 
Chess, Go, 
Othello

admissible, 
perfect info

ChanceDeterministic
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Game Playing as Search

� Consider a two player board game:
– e.g., chess, checkers, tic-tac-toe
– board configuration: unique arrangement of "pieces"

� Representing board games as search problem:
– states: board configurations
– operators: legal moves
– initial state: current board configuration
– goal state: winning/terminal board configuration
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Game Tree Representation
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Complexity of Game Playing

� Assume the opponent’s moves can be
predicted given the computer's moves

� How complex would search be in this case?
– worst case: O(bd) branching factor, depth
– Tic-Tac-Toe: ~5 legal moves, max of 9 moves

� 59 = 1,953,125 states

– Chess: ~35 legal moves, ~100 moves per game
� bd ~ 35100 ~10154 states, “only” ~1040 legal states

� Common games produce enormous search trees
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Greedy Search
using an Evaluation Function

� An evaluation/utility function is used to map each 
terminal state of the board to a number 
corresponding to the value of that state to the 
computer
– positive for winning
– negative for losing
– 0 for a draw
– typical values (lost to win):

� -∞∞∞∞ to +∞∞∞∞
� -1.0 to +1.0
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Greedy Search
using an Evaluation Function

� Expand the search tree to the terminal states
on each branch

� Evaluate utility of each terminal board configurati on
� Make the initial move that results in the board 

configuration with the maximum value
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Greedy Search
using an Evaluation Function

� Assuming a reasonable search space,
what's the problem?
This ignores what the opponent might do!
Computer chooses C
Opponent chooses J and defeats computer
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Minimax Principle

� Assuming the worst (i.e., opponent plays optimally):
– given there are two plays till the terminal states
– high utility numbers favor the computer

� computer should choose maximizing moves

– low utility numbers favor the opponent
� smart opponent chooses minimizing moves
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Propagating Minimax Values
up the Game Tree

� Explore the tree to the terminal states
� Evaluate utility of the resulting board 

configurations
� The computer makes a move to put the board in the 

best configuration for it assuming the opponent 
makes her best moves on her turn:
– start at the leaves
– assign value to the parent node as follows

� use minimum when children are opponent’s moves
� use maximum when children are computer's moves
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� Minimax can be generalized to more than 2 moves
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General Minimax Algorithm

For each move by the computer:
1. Perform depth-first search to a terminal state
2. Evaluate each terminal state
3. Propagate upwards the minimax values

if opponent's move, propagate up minimum value of c hildren
if cumputer's move, propagate up maximum value of ch ildren

4. choose move with the maximum of minimax values of children

Note:
• minimax values gradually propagate upwards as DFS pr oceeds: 

i.e., minimax values propagate up in “left-to-right”  fashion
• minimax values for sub-tree propagate upwards “as we  go,” so 

only O(bd) nodes need to be kept in memory at any time

2/15/200615 ©2001 James D. Skrentny from notes by C. Dyer

Complexity of Minimax Algorithm

Assume all terminal states are at depth d

� Space complexity
depth-first search, so O(bd)

� Time complexity
given branching factor b, so O(bd)

� Time complexity is a major problem since computer 
typically only has a finite amount of time to make a 
move
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Complexity of Minimax Algorithm

� Direct Minimax algorithm is impractical in practice
– instead do depth-limited search to depth m
– but evaluation defined only for terminal states
– we need to know the value of non-terminal states

� Static board evaluator (SBE) functions use 
heuristics to estimate the value of non-terminal 
states
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Static Board Evaluator (SBE)

� A static board evaluation function is used to 
estimate how good the current board configuration 
is for the computer
– it reflects the computer’s chances of winning from 

that node 
– it must be easy to calculate from board configuration

� For example, Chess:
SBE = α * materialBalance + 

β

* centerControl + γ * …
material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc.
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Static Board Evaluator (SBE)

� Typically, one subtracts how good it is for the 
computer from how good it is for the opponent

� If the board evaluation is X for a player then its - X
for opponent

� Must agree with the utility function when calculate d 
at terminal nodes
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Minimax Algorithm with SBE

int minimax (Node s, int depth, int limit) {
Vector v = new Vector();
if ( isTerminal (s) || depth == limit) // base case

return( staticEvaluation (s));
else {

// do minimax on successors of s and save their valu es
while (s.hasMoreSuccessors())

v.addElement( minimax (s.getNextSuccessor(),depth+1,limit));
if ( isComputersTurn (s))

return maxOf(v); // computer's move return max of children
else

return minOf (v); // opponent's move return min of children
}

}
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Minimax with Evaluation Functions

� Same as general Minimax, except
– only goes to depth m
– estimates using SBE function

� How would this algorithm perform at chess?
– if could look ahead ~4 pairs of moves (i.e., 8 ply) 

would be consistently beaten by average players
– if could look ahead ~8 pairs as done in a typical PC, 

is as good as human master
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Summary So Far

� Can't Minimax search to the end of the game
– if could, then choosing move is easy

� SBE isn't perfect at estimating/scoring
– if it was, just choose best move without searching

� Since neither is feasible for interesting games, 
combine Minimax with SBE:
– Minimax to depth m
– use SBE to estimate/score board configuration
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Alpha-Beta Idea

� Some of the branches of the game tree won't be 
taken if playing against an intelligent opponent

� Pruning can be used to ignore those branches
� Keep track of while doing DFS of game tree:

– maximizing level: alpha
� highest value seen so far
� lower bound on node's evaluation/score

– minimizing level: beta
� lowest value seen so far
� higher bound on node's evaluation/score
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Alpha-Beta Idea

� Pruning occurs:
– when maximizing :

if alpha ≥ parent's beta, stop expanding
opponent won't allow computer to take this route

– when minimizing :

if beta ≤ parent's alpha, stop expanding
computer shouldn't take this route
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so smart opponent won't take J:9 since H:3 is worse
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Alpha-Beta Example

minimax(C,1,4) is returned to
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beta not changed (minimizing)
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C
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Alpha-Beta Example

minimax(A,0,4) is returned to

max
Call
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A

min

max

min

X
-5

alpha = 3 , updated to maximum seen so far

Aα=-5
Aα=3
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Alpha-Beta Example

minimax(D,1,4)
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D

D
0
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Alpha-Beta Example

minimax(A,0,4) is returned to
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alpha not updated (maximizing)

Aα=3
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Alpha-Beta Example

How does the algorithm finish the search tree?
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A
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min

X
-5

Aα=3
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Alpha-Beta Example

E's beta ≤≤≤≤ A's alpha: stop expanding E (alpha cut-off)
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X
-5

Aα=3
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Alpha-Beta Example

max
Call
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A

min
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X
-5

Aα=3

Why? Smart opponent will choose L or worse, thus E's upper bound is 2;

so computer shouldn't choose E:2 since C:3 is better path
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Result: Computer chooses move to C
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Effectiveness of Alpha-Beta Search

� Effectiveness depends on the order in which 
successors are examined. More effective if best
are examined first

� Worst Case:
– ordered so that no pruning takes place
– no improvement over exhaustive search

� Best Case:
– each player’s best move is evaluated first (left-most)

� In practice, performance is closer to best
rather than worst case
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Effectiveness of Alpha-Beta Search

� In practice often get O(b(d/2)) rather than O(bd)

– same as having a branching factor of √b

since (√√√√b)d =  b(d/2)

� For Example: Chess
– goes from b ~ 35 to  b ~ 6

– permits much deeper search for the same time
– makes computer chess competitive with humans
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Dealing with Limited Time

� In real games, there is usually a time limit T on 
making a move

� How do we take this into account? 
– cannot stop alpha-beta midway and expect to use

results with any confidence
– so, we could set a conservative depth-limit that 

guarantees we will find a move in time < T
– but then, the search may finish early and

the opportunity is wasted to do more search
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Dealing with Limited Time

� In practice, iterative deepening search (IDS) is us ed
– run alpha-beta search with an increasing depth limit
– when the clock runs out, use the solution found

for the last completed alpha-beta search
(i.e., the deepest search that was completed)



16

2/15/200661 ©2001 James D. Skrentny from notes by C. Dyer

The Horizon Effect

� Sometimes disaster lurks just beyond search depth
– computer captures queen, but a few moves later the 

opponent checkmates (i.e., wins)
� The computer has a limited horizon ; it cannot

see that this significant event could happen
� How do you avoid catastrophic losses due to 

“short-sightedness”?
– quiescence search
– secondary search
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The Horizon Effect

� Quiescence Search
– when evaluation frequently changing, look deeper 

than limit
– look for a point when game “quiets down”

� Secondary Search
1. find best move looking to depth d
2. look k steps beyond to verify that it still looks good
3. if it doesn't, repeat Step 2 for next best move
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Book Moves

� Build a database of opening moves, end games, 
and studied configurations

� If the current state is in the database, use 
database:
– to determine the next move
– to evaluate the board

� Otherwise, do alpha-beta search
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More on Evaluation Functions

� The board evaluation function estimates how good 
the current board configuration is for the computer
– it is a heuristic function of the features of the board

� i.e.,  function(f1, f2, f3, …, fn)

– the features are numeric characteristics
� feature 1, f1, is number of white pieces
� feature 2, f2, is number of black pieces
� feature 3, f3, is f1/f2

� feature 4, f4, is estimate of “threat” to white king
� etc.
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Linear Evaluation Functions

� A linear evaluation function of the features
is a weighted sum of f1 , f2 , f3 ,...
w1 * f1 + w2 * f2 + w3 * f3 + … + wn * fn

– where f 1, f2, …, fn are the features
– and w1, w2 , …, wn are the weights

� More important features get more weight
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Linear Evaluation Functions

� The quality of play depends directly on the quality  
of the evaluation function

� To build an evaluation function we have to:
1. construct good features using expert knowledge
2. pick or learn good weights
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Learning the Weights in
a Linear Evaluation Function

� How could we learn these weights?
� Basic idea:

play lots of games against an opponent
– for every move (or game) look at the

error = true outcome  - evaluation function
– if error is positive (underestimating),

adjust weights to increase the evaluation function
– if error is zero, do nothing
– if error is negative (overestimating),

adjust weights to decrease the evaluation function
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Examples of Algorithms
which Learn to Play Well

Checkers:
A. L. Samuel, “Some Studies in Machine Learning 
using the Game of Checkers,” IBM Journal of Research 
and Development, 11(6):601-617, 1959

� Learned by playing a copy of itself thousands of times
� Used only an IBM 704 with 10,000 words of RAM, 

magnetic tape, and a clock speed of 1 kHz
� Successful enough to compete well at human 

tournaments
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Examples of Algorithms
which Learn to Play Well

Backgammon:
G. Tesauro and T. J. Sejnowski, “A Parallel Network 
that Learns to Play Backgammon,” Artificial Intelligence
39(3), 357-390, 1989

� Also learns by playing copies of itself
� Uses a non-linear evaluation function - a neural network 
� Rated one of the top three players in the world
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Non-deterministic Games

� Some games involve chance, for example:
– roll of dice
– spin of game wheel
– deal of cards from shuffled deck

� How can we handle games with random elements?
� The game tree representation is extended

to include chance nodes:
1. computer moves
2. chance nodes
3. opponent moves
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Non-deterministic Games

The game tree representation is extended:
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Non-deterministic Games

� Weight score by the probabilities that move occurs
� Use expected value for move: sum of possible 

random outcomes A α=

Bβ
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7 2
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Non-deterministic Games

� Choose move with highest expected value
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Non-deterministic Games

� Non-determinism increases branching factor
– 21 possible rolls with 2 dice

� Value of lookahead diminishes: as depth increases 
probability of reaching a given node decreases

� alpha-beta pruning less effective
� TDGammon:

– depth-2 search
– very good heuristic
– plays at world champion level
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Computers can play
GrandMaster Chess

“Deep Blue” (IBM)
� Parallel processor, 32 nodes
� Each node has 8 dedicated VLSI “chess chips”
� Can search 200 million configurations/second
� Uses minimax, alpha-beta, sophisticated heuristics

� It currently can search to 14 ply (i.e., 7 pairs of moves)
� Can avoid horizon by searching as deep as 40 ply
� Uses book moves
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Computers can play
GrandMaster Chess

Kasparov vs. Deep Blue, May 1997
� 6 game full-regulation chess match sponsored by ACM
� Kasparov lost the match 2 wins & 1 tie to 3 wins & 1 tie
� This was an historic achievement for computer chess 

being the first time a computer became the best chess 
player on the planet

� Note that Deep Blue plays by “brute force” (i.e., ra w 
power from computer speed and memory); it uses 
relatively little that is similar to human intuitio n and 
cleverness
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Chess Rating Scale
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Garry Kasparov (current World Champion) Deep Blue
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2/15/200678 ©2001 James D. Skrentny from notes by C. Dyer

Status of Computers
in Other Deterministic Games

� Checkers/Draughts
– current world champion is Chinook
– can beat any human, (beat Tinsley in 1994)
– uses alpha-beta search, book moves (> 443 billion)

� Othello
– computers can easily beat the world experts

� Go
– branching factor b ~ 360  (very large!)
– $2 million prize for any system that can beat a world 

expert
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Summary

� Game playing is best modeled as a search problem
� Search trees for games represent alternate 

computer/opponent moves
� Evaluation functions estimate the quality of

a given board configuration for each player
- good for opponent
+ good for computer
0 neutral
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Summary

� Minimax is a procedure that chooses moves by 
assuming that the opponent always choose their 
best move

� Alpha-beta pruning is a procedure that can 
eliminate large parts of the search tree enabling
the search to go deeper

� For many well-known games, computer algorithms 
using heuristic search can match or out-perform 
human world experts
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Conclusion

� Initially thought to be good area for AI research
� But brute force has proven to be better than

a lot of knowledge engineering
– more high-speed hardware issues than AI
– simplifying AI part enabled scaling up of hardware

� Still a good test-bed for computer learning

� Perhaps machines don't have to think like us?


