Game Playing

Chapter 6
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Game Playing and Al

Deterministic Chance

admissible, Checkers, Backgammon,
perfect info Chess, Go, Monopoly
Othello

not admissible, |what kinds of Bridge, Poker,
imperfect info games here? Scrabble
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Game Playing and Al

e Game playing (was?) thought to be
a good problem for Al research:
- game playing is non-trivial
e players need “human-like” intelligence
e games can be very complex (e.g., chess, go)
e requires decision making within limited time
- games usually are:
o well-defined and repeatable
e limited and accessible
- can directly compare humans and computers
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Game Playing as Search

e Consider a two player board game:

- e.g., chess, checkers, tic-tac-toe

- board configuration: unique arrangement of "pieces”
e Representing board games as search problem:

- states: board configurations

- operators: legal moves

- initial state: current board configuration

- goal state: winning/terminal board configuration
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Game Tree Representation

What's the new aspect
to the search problem?

There’s an opponent
we cannot control!

How can we handle this?
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Greedy Search
using an Evaluation Function

* An evaluation/utility function is used to map each
terminal state of the board to a number
corresponding to the value of that state to the
computer

- positive for winning

- negative for losing

- 0 for a draw

- typical values (lost to win):

® -00 {0 +oo
e -1.0to+1.0
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Complexity of Game Playing

e Assume the opponent’'s moves can be
predicted given the computer's moves
e How complex would search be in this case?
- worst case: O(b%) branching factor, depth

- Tic-Tac-Toe: ~5 legal moves, max of 9 moves
e 59=1,953,125 states

- Chess: ~35 legal moves, ~100 moves per game
e b ~ 35100 ~10154 states, “only” ~10%°legal states

% Common games produce enormous search trees
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Greedy Search
using an Evaluation Function

Expand the search tree to the terminal states
on each branch

e Evaluate utility of each terminal board configurati on

e Make the initial move that results in the board
configuration with the maximum value

computer's possible moves

opponent's
possible moves

board evaluation from computer's perspective
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Greedy Search
using an Evaluation Function

Assuming a reasonable search space,
what's the problem?

This ignores what the opponent might do!

Computer chooses C

Opponent chooses J and defeats computer

computer's possible moves

opponent's
possible moves

QQ terminal states

board evaluation from computer's perspective
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Minimax Principle

e The computer assumes after it moves
the opponent will choose the minimizing move

e The computer chooses the best move considering
both its move and opponent’s optimal move

computer's possible moves

opponent's
possible moves

board evaluation from computer's perspective
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Minimax Principle

e Assuming the worst (i.e., opponent plays optimally):
- given there are two plays till the terminal states
- high utility numbers favor the computer
e computer should choose maximizing moves
- low utility numbers favor the opponent
e smart opponent chooses minimizing moves
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Propagating Minimax Values
up the Game Tree

Explore the tree to the terminal states

e Evaluate utility of the resulting board
configurations

e The computer makes a move to put the board in the
best configuration for it assuming the opponent
makes her best moves on her turn:

- start at the leaves

- assign value to the parent node as follows
e use minimum when children are opponent’s moves
e use maximum when children are computer's moves
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Deeper Game Trees

e Minimax can be generalized to more than 2 moves
e Propagate /percolate values upwards in the tree

computer max

oppponent min

computer max

terminal states
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Complexity of Minimax Algorithm

Assume all terminal states are at depth  d
e Space complexity

depth-first search, so O(bd)
e Time complexity

given branching factor b, so O(b%)

* Time complexity is a major problem since computer
typically only has a finite amount of time to make a
move
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General Minimax Algorithm

For each move by the computer:
1. Perform depth-first search to a terminal state
2. Evaluate each terminal state

3. Propagate upwards the minimax values

if opponent's move, propagate up minimum value of ¢ hildren

if cumputer's move, propagate up maximum value of ch ildren
4. choose move with the maximum of minimax values of children
Note:
. minimax values gradually propagate upwards as DFS pr oceeds:

i.e., minimax values propagate up in “left-to-right” fashion
. minimax values for sub-tree propagate upwards “as we go,” so

only Q(bd) nodes need to be kept in memory at any time
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Complexity of Minimax Algorithm

e Direct Minimax algorithm is impractical in practice
- instead do depth-limited search to depth m
- but evaluation defined only for terminal states
- we need to know the value of non-terminal states

% Static board evaluator (SBE) functions use
heuristics to estimate the value of non-terminal
states
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Static Board Evaluator (SBE)

* A static board evaluation function is used to
estimate how good the current board configuration
is for the computer
- it reflects the computer’s chances of winning from
that node
- it must be easy to calculate from board configuration
e For example, Chess:
SBE = a * materialBalance + p * centerControl +y * ...

material balance = Value of white pieces - Value of black pieces
pawn =1, rook = 5, queen = 9, etc.
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Minimax Algorithm with SBE

int minimax (Node s, int depth, int limit) {
Vector v = new Vector();

if (isTerminal  (s) || depth == limit) /l base case
return(  staticEvaluation o)
else {
/I do minimax on successors of s and save their valu es

while (s.hasMoreSuccessors())
v.addElement(  minimax (s.getNextSuccessor(),depth+1,limit));
if ( isComputersTurn  (s))

return  maxOf(v);  // computer's move return max of children
else
return  minOf (v);  // opponent's move return min of children

©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Static Board Evaluator (SBE)

Typically, one subtracts how good it is for the
computer from how good it is for the opponent

e If the board evaluation is X for a player thenits - X
for opponent

e Must agree with the utility function when calculate d
at terminal nodes

©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Minimax with Evaluation Functions

e Same as general Minimax, except
- only goes to depth m
- estimates using SBE function

e How would this algorithm perform at chess?
- if could look ahead ~4 pairs of moves (i.e., 8 ply)
would be consistently beaten by average players
- if could look ahead ~8 pairs as done in a typical PC,
is as good as human master
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Summary So Far
.|

e Can't Minimax search to the end of the game
- if could, then choosing move is easy
e SBE isn't perfect at estimating/scoring
- if it was, just choose best move without searching

e Since neither is feasible for interesting games,
combine Minimax with SBE:
- Minimax to depth m
- use SBE to estimate/score board configuration
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Alpha-Beta Idea
.|

e Some of the branches of the game tree won't be
taken if playing against an intelligent opponent

e Pruning can be used to ignore those branches
e Keep track of while doing DFS of game tree:
- maximizing level: alpha
e highest value seen so far
e lower bound on node's evaluation/score
- minimizing level: beta
e |lowest value seen so far
e higher bound on node's evaluation/score
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Alpha-Beta Idea
.|
e Pruning occurs:
- when :
if alpha = parent's beta, stop expanding

opponent won't allow computer to take this route
- when :

if beta < parent's alpha, stop expanding
computer shouldn't take this route
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Alpha-Beta Example
.|

minimax(A,0,4)
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Alpha-Beta Example

minimax(B,1,4)

Alpha-Beta Example

minimax(F,2,4)
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@ @ i
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Alpha-Beta Example
.|

minimax(N,3,4)
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Alpha-Beta Example
.|

minimax(F,2,4) is returned to
alpha=4 , maximum seen so far
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Alpha-Beta Example

minimax(0,3,4)

Alpha-Beta Example

minimax(W,4,4)

>mWTO S

Q : ©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Call
Stack

o

F

B

OO :
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Alpha-Beta Example
minimax(0,3,4) is returned to
beta=-3 , minimum seen so far

Call
Stack

(@]

OO OOOO® ¢

B

A
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Alpha-Beta Example

minimax(0,3,4) is returned to
O's beta < F's alpha: stop expanding O (alpha cut-off)

Call
Stack
(e}
B
A
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Alpha-Beta Example

Why?  Smart opponent will choose W or worse, thus O's upper bound is —3
So computer shouldn't choose O:-3 since N:4 is better

Alpha-Beta Example

minimax(F,2,4) is returned to
alpha not changed (maximizing)
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Call
Stack
o
F
B
OO0 :
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Alpha-Beta Example
minimax(B,1,4) is returned to
beta=4 , minimum seen so far
Call
Stack
OO OO0 |
A
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Alpha-Beta Example

minimax(G,2,4)

Call
Stack
B
A
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Alpha-Beta Example

minimax(B,1,4) is returned to
beta=-5 , updated to minimum seen so far

a . ©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Alpha-Beta Example

minimax(A,0,4) is returned to
alpha=-5 , maximum seen so far

Q . i
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Alpha-Beta Example

minimax(C,1,4)

Call
Stack

® O
OO OO0
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Alpha-Beta Example

minimax(H,2,4)

Call
Stack
@
A
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Alpha-Beta Example

minimax(C,1,4) is returned to
beta=3 , minimum seen so far

Call

e Stack

min

blue: terminal state A
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Alpha-Beta Example

minimax(C,1,4) is returned to
beta not changed (minimizing)

max cal
Stack
min
max
Cc
blue: terminal state A
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Alpha-Beta Example

minimax(l,2,4)

Call

e Stack

min

blue: terminal state A
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Alpha-Beta Example

minimax(J,2,4)

max cal
Stack
min
max
J
C
blue: terminal state A
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Alpha-Beta Example
minimax(P,3,4)

Call

e Stack

min

0
o
s
€
0
0
G
S

blue: terminal state
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Alpha-Beta Example

minimax(J,2,4) is returned to
J's alpha = C's beta: stop expanding J (beta cut-off)

max cal
Stack
min
max
J
Cc
blue: terminal state A
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Alpha-Beta Example

is returned to

minimax(J,2,4)
alpha=9

Call
Stack

max

min

blue: terminal state A
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Alpha-Beta Example

Why?  Computer should choose P or better, thus J's lower bound is 9;

so smart opponent won't take J:9 since H:3 is worse

max cal
Stack
min
max
J
C
blue: terminal state A
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Alpha-Beta Example

minimax(C,1,4) is returned to
beta not changed (minimizing)

Call

e Stack

min

blue: terminal state A

©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Alpha-Beta Example

minimax(D,1,4)

max cal
Stack
min
max
D
blue: terminal state A

©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Alpha-Beta Example

minimax(A,0,4) is returned to

alpha=3 , updated to maximum seen so far

max call
. Stack
min
max
- @
blue: terminal state A
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Alpha-Beta Example
minimax(A,0,4) is returned to
alpha not updated (maximizing)
max cal
Stack
min
max
blue: terminal state A
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Alpha-Beta Example

How does the algorithm finish the search tree?

Call
e Stack
min
max
- @ 000 COO®
blue: terminal state A
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Alpha-Beta Example

Why?  Smart opponent will choose L or worse, thus E's upper bound is 2;

so computer shouldn't choose E:2 since C:3 is better path

max cal
Stack
min
max
blue: terminal state A
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Alpha-Beta Example

E's beta < A's alpha: stop expanding E (alpha cut-off)

max call
. Stack
min
max
- @
blue: terminal state A
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Alpha-Beta Example
Result: Computer chooses move to C
max cal
Stack
min
max
blue: terminal state A
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Effectiveness of Alpha-Beta Search

Effectiveness depends on the order in which
successors are examined. More effective if best
are examined first
e Worst Case:
- ordered so that no pruning takes place
- no improvement over exhaustive search
e Best Case:
- each player’s best move is evaluated first (left-most)

e In practice, performance is closer to best
rather than worst case
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Dealing with Limited Time

e In real games, there is usually a time limit T on
making a move
e How do we take this into account?
- cannot stop alpha-beta midway and expect to use
results with any confidence
- so, we could set a conservative depth-limit that
guarantees we will find a move in time < T
- but then, the search may finish early and
the opportunity is wasted to do more search
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Effectiveness of Alpha-Beta Search

e In practice often get O(b@?) rather than O(b%)
- same as having a branching factor of Vb
since (vb)4 = b2
e For Example: Chess
- goesfromb~351to b~6
- permits much deeper search for the same time
- makes computer chess competitive with humans
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Dealing with Limited Time

e In practice, iterative deepening search (IDS) isus ed
- run alpha-beta search with an increasing depth limit
- when the clock runs out, use the solution found
for the last completed alpha-beta search
(i.e., the deepest search that was completed)
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The Horizon Effect

e Sometimes disaster lurks just beyond search depth

- computer captures queen, but a few moves later the
opponent checkmates (i.e., wins)

e The computer has a limited horizon ; it cannot
see that this significant event could happen

e How do you avoid catastrophic losses due to
“short-sightedness”?
- quiescence search
- secondary search

©2001 James D. Skrentny from notes by C. Dyer 2/15/2006

Book Moves

Build a database of opening moves, end games,
and studied configurations

e |[f the current state is in the database, use
database:
- to determine the next move
- to evaluate the board

e Otherwise, do alpha-beta search
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The Horizon Effect

e Quiescence Search

- when evaluation frequently changing, look deeper
than limit

- look for a point when game “quiets down”

e Secondary Search
1. find best move looking to depth d
2. look k steps beyond to verify that it still looks good
3. if it doesn't, repeat Step 2 for next best move
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More on Evaluation Functions

% The board evaluation function estimates how good
the current board configuration is for the computer
- itis a heuristic function of the features of the board
e i.e., function(fy fy fy s f,)
- the features are numeric characteristics
o feature 1, f;, is number of white pieces
e feature 2, f,, is number of black pieces
o feature 3, f3, is fi/f,
o feature 4, f,, is estimate of “threat” to white king
e etc.
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Linear Evaluation Functions

e A linear evaluation function  of the features
is aweighted sum of f;, f,, f5,...
w it w, hrwytfit . rw,
- wheref,, f,, ..., f, are the features
- and w,, w,, ..., w, are the weights

* More important features get more weight
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Learning the Weights in
a Linear Evaluation Function

e How could we learn these weights?
e Basic idea:
play lots of games against an opponent
- for every move (or game) look at the
error = true outcome - evaluation function
- if error is positive (underestimating),
adjust weights to increase the evaluation function
- if error is zero, do nothing
- if error is negative (overestimating),
adjust weights to decrease the evaluation function
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Linear Evaluation Functions

% The quality of play depends directly on the quality
of the evaluation function

e To build an evaluation function we have to:
1. construct good features using expert knowledge
2. pick or learn good weights
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Examples of Algorithms
which Learn to Play Well

Checkers:

A. L. Samuel, “Some Studies in Machine Learning
using the Game of Checkers,” IBM Journal of Research
and Development, 11(6):601-617, 1959

e Learned by playing a copy of itself thousands of times

e Used only an IBM 704 with 10,000 words of RAM,
magnetic tape, and a clock speed of 1 kHz

e Successful enough to compete well at human
tournaments
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Examples of Algorithms
which Learn to Play Well

Backgammon:
G. Tesauro and T. J. Sejnowski, “A Parallel Network
that Learns to Play Backgammon,” Artificial Intelligence
39(3), 357-390, 1989

e Also learns by playing copies of itself

e Uses a non-linear evaluation function - a neural network

e Rated one of the top three players in the world
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Non-deterministic Games

The game tree representation is extended:

A max

chance

min
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Non-deterministic Games

Some games involve chance, for example:
- roll of dice

- spin of game wheel

- deal of cards from shuffled deck

How can we handle games with random elements?
e The game tree representation is extended

to include chance nodes:
1. computer moves
2. chance nodes
3. opponent moves
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Non-deterministic Games

e Weight score by the probabilities that move occurs
e Use expected value for move: sum of possible

random outcomes A
max

chance

min
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Non-deterministic Games

e Choose move with highest expected value

A max
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Computers can play
GrandMaster Chess

“Deep Blue” (IBM)
Parallel processor, 32 nodes

Each node has 8 dedicated VLSI “chess chips”

Can search 200 million configurations/second

Uses minimax, alpha-beta, sophisticated heuristics

It currently can search to 14 ply (i.e., 7 pairs of moves)
Can avoid horizon by searching as deep as 40 ply
Uses book moves
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Non-deterministic Games

Non-determinism increases branching factor

- 21 possible rolls with 2 dice

e Value of lookahead diminishes: as depth increases
probability of reaching a given node decreases

e alpha-beta pruning less effective

e TDGammon:

- depth-2 search

- very good heuristic

- plays at world champion level
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Computers can play
GrandMaster Chess

Kasparov vs. Deep Blue, May 1997
e 6 game full-regulation chess match sponsored by ACM
e Kasparov lost the match 2 wins & 1 tie to 3 wins & 1 tie

e This was an historic achievement for computer chess
being the first time a computer became the best chess
player on the planet

e Note that Deep Blue plays by “brute force” (i.e.,ra w
power from computer speed and memory); it uses
relatively little that is similar to human intuitio n and
cleverness
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Chess Rating Scale
. .|

3000+ ,

500 -
2600_ Garry Kasparov (current World Champion) _Deep Blue
2400
2200
2000
1800
1600
1400-

1200 T T T T T |
1966 1971 1976 1981 1986 1991 1997
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Deep Thought

Status of Computers
in Other Deterministic Games

e Checkers/Draughts

- current world champion is Chinook

- can beat any human, (beat Tinsley in 1994)

- uses alpha-beta search, book moves (> 443 billion)
e Othello

- computers can easily beat the world experts
e Go

- branching factor b ~ 360 (very large!)

- $2 million prize for any system that can beat a world

expert
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Summary
.|

e Game playing is best modeled as a search problem
e Search trees for games represent alternate
computer/opponent moves
e Evaluation functions estimate the quality of
a given board configuration for each player
- good for opponent
+ good for computer
0 neutral
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Summary
.

e Minimax is a procedure that chooses moves by
assuming that the opponent always choose their
best move

e Alpha-beta pruning is a procedure that can
eliminate large parts of the search tree enabling
the search to go deeper

e For many well-known games, computer algorithms
using heuristic search can match or out-perform
human world experts
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Conclusion

Initially thought to be good area for Al research
But brute force has proven to be better than

a lot of knowledge engineering

- more high-speed hardware issues than Al

- simplifying Al part enabled scaling up of hardware
Still a good test-bed for computer learning

e Perhaps machines don't have to think like us?
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