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Note to other teachers and users of 

these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 

to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 

your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 

http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 
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A simple Bayes Net
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Saw “Return of the King” more than onceR

Live in zipcode 15213Z

Brought Coat to ClassroomC

Person is a JuniorJ
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A simple Bayes Net

J

RZC

Saw “Return of the King” more than onceR

Live in zipcode 15213Z

Brought Coat to ClassroomC

Person is a JuniorJ

What parameters are 
stored in the CPTs of 
this Bayes Net?
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A simple Bayes Net
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A simple Bayes Net
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A Naïve Bayes Classifier

J

RZC

Saw “Return of the King” more 
than once

R

Live in zipcode 15213Z

Brought Coat to ClassroomC

Walked to SchoolJ
P(J) =

P(C|J) =

P(C|~J)=

P(R|J) =

P(R|~J)=

P(Z|J) =

P(Z|~J)=Input Attributes

Output Attribute

A new person shows up at class wearing an “I live right above the 
Manor Theater where I saw all the Lord of The Rings Movies every
night” overcoat.

What is the probability that they are a Junior?
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Naïve Bayes Classifier Inference
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The General Case

Y

X1 XmX2
. . .

1. Estimate P(Y=v) as fraction of records with Y=v

2. Estimate P(Xi=u | Y=v) as fraction of “Y=v” records that also 
have X=u.

3. To predict the Y value given observations of all the Xi values, 
compute

)|(argmax 11

predict
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Naïve Bayes Classifier
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Because of the structure of 
the Bayes Net

Copyright © 2004, Andrew W. Moore Slide 10

More Facts About Naïve Bayes
Classifiers

• Naïve Bayes Classifiers can be built with real-valued 
inputs*

• Rather Technical Complaint: Bayes Classifiers don’t try to 
be maximally discriminative---they merely try to honestly 
model what’s going on*

• Zero probabilities are painful for Joint and Naïve. A hack 
(justifiable with the magic words “Dirichlet Prior”) can 
help*.

• Naïve Bayes is wonderfully cheap. And survives 10,000 
attributes cheerfully!

*See future Andrew Lectures

Copyright © 2004, Andrew W. Moore Slide 11

What you should know

• How to build a Bayes Classifier

• How to predict with a BC


