Analysis and Evolution of Journaling File Systems

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Rem&rpaci-Dusseau
University of Wisconsin, Madison

Abstract because we leverage information about block type.(

We develop and apply two new methods for analyzing file sy\y_hether a block request is to the journal, to an inode,

tem behavior and evaluating file system changes. Bieshantic etc.); this_analysis iblock-levelbecause it_ interposes on
block-level analysis (SBApmbines knowledge of on-disk datathe block Inter_face to Storqge. By ana_IyZIng the low-level
structures with a trace of disk traffic to infer file systemdebr; block stream in a semantically meaningful way, one can

in contrast to standard benchmarking approaches, SBAmaMnderStand\’hythe file system behaves as it does.

users to understanghythe file system behaves as it does. Sec- Analysis hints at how the file system could be im-
ond,semantic trace playback (STBjables traces of disk trafficProved, but does not reveal whether the change is worth
to be easily modified to represent changes in the file system #fiplementing. Traditionally, for each potential improve-
plementation; in contrast to directly modifying the file s, Ment to the file system, one must implement the change
STP enables users to rapidly gauge the benefits of new mlicRnd measure performance under various workloads; if the
We use SBA to analyze Linux ext3, ReiserFS, and JFS: in thBange gives little improvement, the implementation ef-
process, we uncover many strengths and weaknesses of tf@geis wasted. In this paper, we introduce and apply a
journaling file systems. We also apply STP to evaluate sevef@Mplementary technique to SBA callsémantic trace
modifications to ext3, demonstrating the benefits of varapis ~ Playback(STP). STP enables us to rapidly suggest and

mizations without incurring the costs of a real implemeintat evaluat.e file system .modifications. without a large imple-
mentation or simulation effort. Using real workloads and

1 Introduction traces, we show how STP can be used effectively.

Modern file systems are journaling file systems [4, 22 We have applied a detailed analysis to both Linux ext3

S . . ahd ReiserFS and a preliminary analysis to Linux JFS. In
27, 30]. By writing information about pending updates , . :

; - €ach case, we focus on the journaling aspects of each file
to a write-ahead log [12] before committing the updates

O . , system. For example, we determine the events that cause
to disk, journaling enables fast file system recovery aftfx

a crash. Although the basic techniques have existed grta and meta-data to be written to the journal or their

; . ; ixed locations. We also examine how the characteristics
many ye_arse(.g, In ?edar [13]_and Ep_|sode [90). JQumal'of the workload and configuration parameteesg(the
N9 hE.lS increased n popul_arlty gnd |mpor§ance n recesrigg of the journal and the values of commit timers) impact
years; due to ever-increasing disk capacities, scan-baﬁﬁS behavior
recovery ¢.g, via fsck [16))is prohibitively slow on mod- Our analys.is has uncovered design flaws, performance
ern drives and RAID volumes. However, despite the pop- X >
ularity and importance of journaling file systems such oblems, and correctness bugs in these file systems. For

ext3 [30], ReiserFS [22], and JFS [4], little is known abo@g(ample, ext3 and R.eigerFS make the design decision to
their internal policies. group unrelated traffic into the same compound transac-

Understanding how these file systems behave is impB?-n; the result is that all concurrent traffic runs at therat

tant for developers, administrators, and application-wr the slowest operations. Further, we find that both ext3

ers. Therefore, we believe it is time to perform a detail@lﬁ]d ReiserFS artificially limit the performance of ordered

: . L : urnaling mode by preventing the overlap of pre-commit
analysis of journaling file systems. Most previous WOI]'g_urnal writes and fixed-place updates. We identify four

has analyzed file systems from above; by writing usér—m . X .
level programs and measuring the time taken for vario rsewously unknown bugs in ReiserFS that will now be

file system operations, one can elicit some salient asp a%g Igr:atﬁ:)rrr?rﬁiztist?rﬁ.er?naﬂg, i\rl1vdee]:‘li?1(ijtetlhat ‘(])Ets gr?sss tr;]Oet
of file system performance [6, 8, 19, 26]. However, y y postp

is difficult to discover the underlying reasons for the Og)c_)urnal writes until there is another trigges.g, memory

served performance with this approach. pressure).. o . _

In this paper we employ a novel benchmarking method-The main contributions of this paper are)
ology calledsemantic block-level analys{SBA) to trace _ ® A new methodology, semantic block analysis (SBA),
and analyze file systems. With SBA, we induce controlld@r understanding the internal behavior of file systems.
workload patterns from above the file system, but focu® A new methodology, semantic trace playback (STP),
our analysis not only on the time taken for said opertr rapidly gauging the benefits of file system modifica-
tions, but also on the resulting stream of read and wriiens without a heavy implementation effort.
requestdbelowthe file system. This analysis sgmantic e A detailed analysis using SBA of two important jour-

naling file systems, ext3 and ReiserFS and a preliminary | Exta ReiserFS JFS
X elser

analysis of JFS. : . . . SBA Generic 1289 1289 1289
e An evaluation using STP of different design and im- SBAFS Specific| 181 48 20
plementation alternatives for ext3. SBA Total 1470 1337 1309

The rest of this paper is organized as follows. In Sec-
tion 2 we describe our new techniques for SBA and STfple 1:Code size of SBA drivers The number of C statements
We apply these techniques to ext3, ReiserFS and JF&cmunted as the number of semicolons) needed to implemént SB
Sections 3, 4 and 5, respectively. We discuss related wétkext3 and ReiserFS and a preliminary SBA for JFS.

in Section 6 and conclude in Section 7. we refer to this as the SBA driver. One then runs con-

2 Methodology trolled microbenchmarks to generate disk traffic. As the
m%BA driver passes the traffic to and from the disk, it also
lﬁff_iciently tracks each request and response by storing a
mall record in a fixed-sized circular buffer. Note that
ﬁtracking the ordering of requests and responses, the

We introduce two techniques for evaluating file syste
First, semantic block analysis (SBA) enables users to
derstand the internal behavior and policies of the file s
tem. Second, semantic trace playback (STP) allows usefs

to quantify how changing the file system will impact thQseudo-devu:e driver can infer the order in which the re-
performance of real workloads quests were scheduled at lower levels of the system.

SBA requires that one interpret thententof the disk

2.1 Semantic Block-Level Analysis block traffic. For example, one must interpret the con-
File systems have traditionally been evaluated using amets of the journal to infer the type of journal bloekd,
of two approaches; either one applies synthetic or reatlescriptor or commit block) and one must interpret the
workloads and measures the resulting file system perfigurnal descriptor block to know which data blocks are
mance [6, 14, 17, 19, 20] or one collects traces to ujpurnaled. As a result, it is most efficient to semantically
derstand how file systems are used [1, 2, 21, 24, 33, 3b}erpret block-level traces on-line; performing this bra
However, performing each in isolation misses an interests off-line would require exporting the contents of blacks
ing opportunity: by correlating the observed disk traffigreatly inflating the size of the trace.
with the running workload and with performance, one can An SBA driver is customized to the file system under
often answewhya given workload behaves as it does. test. One concern is the amount of information that must

Block-level tracing of disk traffic allows one to analyz§e embedded within the SBA driver for each file system.
a number of interesting properties of the file system aagen that the focus of this paper is on understanding jour-
workload. At the coarsest granularity, one can record thgling file systems, our SBA drivers are embedded with
quantityOf disk traffic and how it is divided between readénough information to interpret the p|acement and con-
and writes; for example, such information is useful fagnts of journal blocks, metadata, and data blocks. We
understanding how file system caching and write buffefow analyze the complexity of the SBA driver for three

ing affect performance. At a more detailed level, one c@surnaling file systems, ext3, ReiserFS and JFS.
track theblock numbenf each block that is read or writ- Journaling file systems have both a journal, where

ten; by analyzing the block numbers, one can see the gxy,q4ctions are temporarily recorded, and fixed-location
tent to which traffic is sequential or random. Finally, ong, 5 stryctures, where data permanently resides. Our SBA
can analyze théiming of each block; with timing infor- qyer gistinguishes between the traffic sent to the journal
mation, one can understand when the file system initialggy that sent to the fixed-location data structures. This
a burst of tr_afflc. . . traffic is simple to distinguish in ReiserFS and JFS be-
By combining block-level analysis witlemantianfor- 5,6 the journal is a set of contiguous blocks, separate
mation aboutthose blocks, one can infer much more abgut, the rest of the file system. However, to be backward
the behavior of the file system. The main difference bggmpatible with ext2, ext3 can treat the journal as a reg-
tweensemantic block analysiSBA) and more standardy,|or file. Thus, to determine which blocks belong to the
block—level tracing is 'ghat SBA analysis understands t'ftﬂJrnal, SBA uses its knowledge of inodes and indirect
on-disk format of the file system under test. SBA enablgg, . given that the journal does not change location af-
us to understand new properties of the file system. For @i hag heen created, this classification remains efticien
ample, SBA allows us to distinguish between traffic to thg n_time. SBA is also able to classify the different types

journal versus to in-place data and to even track individyglo raj blocks such as the descriptor block, journal data
transactions to the journal. block. and commit block.

2.1.1 Implementation To perform useful analysis of journaling file systems,

The infrastructure for performing SBA is straightthe SBA driver does not have to understand many details
forward. One places a pseudo-device driver in the kefthe file system. For example, our driver does not under-
nel, associates it with an underlying disk, and mounts thtand the directory blocks or superblock of ext3 or the B+
file system of intereste(g, ext3) on the pseudo devicefree structure of ReiserFS or JFS. However, if one wishes

to infer additional file system properties, one may needin the first approach, one simply implements the idea
to embed the SBA driver with more knowledge. Nevewithin the file system and measures the performance of
theless, the SBA driver does not know anything about tttee real system. This approach is attractive because it re-
policies or parameters of the file system; in fact, SBA cdiably answers whether the idea was a real improvement,
be used to infer these policies and parameters. assuming a relevant workload. However, the drawback is
Table 1 reports the number of C statements requiredh@t implementation is time consuming, particularly if the
implement the SBA driver. These numbers show that mdié¢ system modification is non-trivial.
of the code in the SBA driverni.e., 1289 statements) is In the second approach, one evaluates the idea in the
for general infrastructure; only between approximately B®main of a simulation. This approach is attractive be-
and 200 statements are needed to support different jatatse one can often avoid details of the real implemen-

naling file systems. tation and more quickly understand whether the idea is a
good one. However, the drawback is that the simulation
2.1.2 Workloads may not be performed at a sufficient level of detail.

SBA analysis can be used to gather useful information forSemantic trace playback (STP) avoids the difficulties
any workload. However, the focus of this paper is on unf both approaches by using the low-level traces as the
derstanding the internal policies and behavior of the filguth” about how the file system behaves and then modi-
system. As a result, we wish to construct synthetic workying these traces based on new models of behavior. Thus,
loads that uncover interesting decisions made by the &P can rapidly evaluate file system modifications, both
system. More realistic workloads will be considered onlyithout a heavy implementation investment and without a
when we apply semantic trace playback. detailed file system simulator. STP is built as a user-level
When constructing synthetic workloads that stress theocess and requires two traces for input: a block-level
file system, previous research has revealed a range oftpaece produced by the SBA driver and a file-system level
rameters that impact performance [8]. We have createace obtained through library-level interpositioning.Rs
synthetic workloads varying these parameters: the amoth#@n issues 1/0 requests to the disk using the raw disk in-
of data written, sequential versus random accesses, thagnface. Multiple threads are employed for concurrency.
terval between calls tbsync, and the amount of concur- To model some changes in file systems, STP only needs
rency. We focus exclusively on write-based workloads bie block-level SBA trace. For example, to evaluate differ-
cause reads are directed to their fixed-place location, am block layout schemes, STP can simply remap blocks
thus do not impact the journal. When we analyze each fitedifferent on-disk locations and redirect traffic appiepr
system, we only report results for those workloads whieltely. However, to model more significant changes, STP

revealed interesting file system behavior. must know more about the state of the file system. For ex-
. ample, to explore the benefits of storing byte differences
2.1.3 Alternative Approaches instead of entire blocks in the journal, STP must be able

One might believe that directly instrumenting a file syso determinewhenthe journal blocks will be written to
tem to obtain timing information and disk traces would heisk; the timing of 1/0 is changed since the size thresholds
equivalent or superior to performing SBA analysis. Wgre triggered at a different time. Therefore, STP needs to
believe this is not the case for several reasons. Firstoigserve application-level calls to the file system, includ-
directly instrument the file system, one needs source cqgf sync. Without such information, STP cannot know
for that file system and one must re-instrument new veyhether an I/O operation in the SBA trace is required for
sions as they are released; in contrast, SBA analysis dgesync call or is due to file system policies.g, journal

not require file system source and much of the SBA drivgiresholds being crossed, timers going off, etc.).

code can be reused across file systems and versions. Segespite its advantages over traditional implementation
ond, when directly instrumenting the file system, one mawd simulation, STP is limited in some important ways.
accidentally miss some of the conditions for which diskor example, STP is limited to evaluating file system
blocks are written; however, the SBA driver is guarante@flanges that are not too radical; the basic operation of
to see all disk traffic. Finally, instrumenting existing @dihe file system should remain intact. Finally, STP does
may accidentally change the behavior of that code [34lt provide a means to evaludtewto implement a given

an efficient SBA driver will likely have no impact on filechange; rather, it helps one understavitethera certain
system behavior. modification improves performance.

2.2 Semantic Trace Playback 2.3 Environment

After applying SBA to understand how a file system beé\ll measurements are taken on a machine running Linux
haves, one is likely to uncover deficiencies in file syste?4.18 with a 600 MHz Pentium 1l processor and 1 GB
behavior. When one has an idea for improving a file sysf main memory. The file system under test is created
tem, there have been two traditional approaches for evai- a single IBM 9LZX disk, which is separate from the
uating its merits. root disk. Where appropriate, each data point reports the

CYLINDER GROUP 1 OTHER GROUPS WRITEBACK ORDERED DATA

— Fixed (Data) | Fixed (Data)

18 {DB | INODE &) coo fapieoe f gyl ooo
Sync

1B = Inode Bitmap, DB = Data Bitmap, JS = Journal Superblock, JD = Journal Descriptor Block, JC = Journal Commit Block
[Journal (Inode)] [Journal (Inode)] [Journal (Inode+Daﬁa] Journal Write

¢ Sync ¢ Sync ¢ Sync

happen at any time

Figure 1:Ext3 On-Disk Layout. The picture shows the layout
of an ext3 file system. The disk address space is broken dovgn
into a series of block groups (akin to FFS cylinder groupsagte
of which has bitmaps to track allocations and regions fordes
and data blocks. The ext3 journal is depicted here as a filleimvit
the first block group of the file system; it contains a supegklo
various descriptor blocks to describe its contents, and rn@gm
blocks to denote the ends of transactions.

Journal (Commit) Journal (Commit) Journal (Commit) Journal Commit

ta write C:

» » s
[F\xed(lnods)] [Fixed (Inode)] [Fixed(lnode+Dala)] Checkpoint Write

n writeback mode, dat

|
ul
E
3
g
o
I3
&

average of 30 trials; in all cases, variance is quite low. Figure 2: Ext3 Journaling Modes. The diagram depicts the
three different journaling modes of ext3: writeback, omtkrand

3 The Ext3 File System data. In the diagram, time flows downward. Boxes represent

) . . . updates to the file system, e.g., “Journal (Inode)” implibs t
In this section, we analyze the popular Linux filesystemrite of an inode to the journal; the other destination forites

ext3. We begin by giving a brief overview of ext3, ané labeled “Fixed”, which is a write to the fixed in-place ext2
then apply semantic block-level analysis and Semango ctures. An arrow labeled with a “Sync” implies that thea

N lavback t derstand its int | behavi cks are written out in immediate succession synchrdgous
race playback (o understand Iis internal behavior. hence guaranteeing the first completes before the second. A

31 Back d curved arrow indicates ordering but not immediate suc@assi
. ac groun .) .) hence, the second write will happen at some later time. Binal
Linux ext3 [31, 32] is a journaling file system, built as afor writeback mode, the dashed box around the “Fixed (Data)”

extension to the ext2 file system. In ext3, data and mep4ack indicates that it may happen at any time in the sequence

. In this example, we consider a data block write and its inogle a
data are eventually placed into the standard ext2 str € updates that need to be propagated to the file systemij-the d

tures, which are the fixed-location structures. In this ofgrams show how the data flow is different for each of the ext3
ganization (which is loosely based on FFS [15]), the digburnaling modes.

is split into a number oblock groups within each block

group are bitmaps, inode blocks, and data blocks THiE orderedeforethe journal writes of the metadata. In
ext3 journal (or log) is commonly stored as a file withigontrast to writeback mode, this mode provides more sen-

the file system, although it can be stored on a separateﬂ@l—e gonsstency semangcs, vt;/here b(.)th the <f:iata and the
vice or partition. Figure 1 depicts the ext3 on-disk layofi€tadata are guaranteed to be consistent after recovery

Information about pending file system updates is wri om a crash.

ten to the journal. By forcing journal updates to dist N full data journaling modeext3 logsboth metadata
fore updating complex file system structures, this writénd data to the journal. This decision implies that when
ahead logging technique [12] enables simple and efficiéhProcess writes a data block, it will typically be written
crash recovery; a simple scan of the journal and a redd@#t to disktwice: once to the journal, and then later to
any incomplete committed operations bring the file sy4s fixed ext2 location. Data journaling mode provides the
tem to a consistent state. During normal operation, th@Me strong consistency guarantees as ordered journaling
journal is treated as a circular buffer; once the necessHi9de; however, it has different performance characteris-
information has been propagated to its fixed location §i§S, in some cases worse, and surprisingly, in some cases,
the ext2 structures, journal space can be reclaimed. ~ Petter. We explore this topic furthef3.2).
Journaling Modes: Linux ext3 includes three flavors of Transactions: Instead of considering each file system up-
journaling:writeback modeordered modganddata jour- date as a separate transaction, ext3 groups many updates
naling mode Figure 2 illustrates the differences betweeifito a singlecompound transactiothat is periodically
these modes. Although the choice of mode is madec@mmitted to disk. This approach is relatively simple to
mount time, the mode can be changed by remounting ifgplement [31]. Compound transactions may have bet-
file system. ter performance than more fine-grained transactions when
In writeback modgonly file system metadata is jourthe same structure is frequently updated in a short period
naled; data blocks are written directly to their fixed loc#f time (e.g, a free space bitmap or an inode of a file that
tion. This mode does not enforce any ordering betweisrconstantly being extended) [13].
the journal and fixed-location data writes, and becauselJournal Structure: Ext3 uses additional metadata struc-
this, writeback mode has the weakest consistency semtames to track the list of journaled blocks. Tiaurnal
tics of the three modes. Although it guarantees consistsaperblocktiracks summary information for the journal,
file system metadata, it does not provide any guaranteesash as the block size and head and tail pointergpuc
to the consistency of data blocks. nal descriptor blocknarks the beginning of a transaction
In ordered journaling modeagain only metadata writesand describes the subsequent journaled blocks, including
are journaled; however, data writes to their fixed locatidheir final fixed on-disk location. In data journaling mode,

Bandwidth Random write bandwidth Random write bandwidth

4 .

= Data —— : Data —— 08 Data ——
Ordered —— 12 Ordered —— Ordered ——
Writeback —=— Writeback —=— Writeback —=—
Ext2 —e— 10 Ext2 —e— Ext2 —e—

mr'w M

0 20 40 60 80 100 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25
Amount of data written (MB) Amount of data written (MB) Amount of data written (MB)

Bandwidth (MBJs)
Bandwidth (MBJs)

owm & o
Bandwidth (MB/s)

o

&

Amount of journal writes Amount of journal writes Amount of journal writes

140 Data —— :g Data —— 140 Data ——

Ordered —— Ordered —— Ordered ——
Writeback —— 70 Writeback —=— Writeback ——
100 EXt2 —=— 60 Ext2 —e— 100 EXt2 —e—

50

60 40 60
30

40 2 40

20 0 20

0 0

0 20 40 60 80 100 0 10 20 30 40 50 0 5 10 15 20 25
Amount of data written (MB) Amount of data written (MB) Amount of data written (MB)

Journal data (MB)
©
8
Journal data (MB)
Journal data (MB)
©
3

Amount of fixed-location writes Amount of fixed-location writes Amount of fixed-location writes

90 80
80 Data ——
Ordered —— Ordered ——
Writeback —— 70 Writeback

100 Ext2 —=— 60 B

e 50

0

60 40 2
30

0 > 2 20

20 £ 0 10

0 0 0

0 20 40 60 80 100 0 10 20 30 40 50 0 5 10 15 20 25
Amount of data written (MB) Amount of data written (MB) Amount of data written (MB)

Figure 3:Basic Behavior for Sequential and Random Workloads in ext3Within each graph, we evaluate ext2 and the three ext3
journaling modes; we increase the size of the written fileglthe x-axis. Each column of graphs considers a differemkivad:

the first writes to a single file sequentially and then perfoanf sync; the second issues 4 KB writes to random locations in a
single file and call§ sync once for every 256 writes; the third issues 4 KB random wigscallsf sync for every write. Each
row of graphs examines a different metric: the first row shtivesachieved bandwidth; the second uses SBA to report thargmo
of journal traffic; the third uses SBA to report the amount xédi-location traffic. The journal size is set to 50 MB.

the descriptor block is followed by the data and metaddtast, we analyze the basic behavior of ext3 as a function
blocks; in ordered and writeback mode, the descriptofthe workload and the three journaling modes. Second,
block is followed by the metadata blocks. In all modesye isolate the factors that control when data is committed
ext3 logs full blocks, as opposed to differences from otd the journal. Third, we isolate the factors that control
versions; thus, even a single bit change in a bitmap reswitsen data is checkpointed to its fixed-place location.

in the entire bitmap block being logged. Depending upon

the size of the transaction, multiple descriptor block$iead-2.1 Basic Behavior: Modes and Workload

followed by the corresponding data/metadata blocks méfe begin by analyzing the basic behavior of ext3 as a
be logged. Finally, gournal commit blockis written to function of the workload and journaling modee(, write-

the journal at the end of the transaction; once the cohick, ordered, and full data journaling). Our goal is to
mit block is written, the journaled data can be recovereitiderstand the workload conditions that trigger ext3 to
without loss. write data and metadata to the journal and to their fixed
Checkpointing: The process of writing journaled metalocations. Exploring a range of workloads, we have found
data and data to their fixed-locations is knownchsck- that varying the amount of data written in the workload,
pointing Checkpointing is triggered when various thresiihe sequentiality of the writes, the synchronization inter
olds are crosse@,g, when file system buffer space is lowyal between writes, and the number of concurrent writers
when there is little free space left in the journal, or wherelp to reveal interesting behavior about ext3.

a timer expires. Sequential and Random Workloads: We begin by
Crash Recovery: Crash recovery is straightforward irshowing our results for three basic workloads. The first
ext3 (asitis in many journaling file systems); a basic formorkload writes to a single file sequentially and then per-
of redo loggingis used. Because new updates (whetherf@rms anf sync to flush its data to disk; the second work-
data or just metadata) are written to the log, the procdead issues 4 KB writes to random locations in a sin-
of restoring in-place file system structures is easy. Durigtg file and callsf sync once for every 256 writes; the
recovery, the file system scans the log for committed cothird workload again issues 4 KB random writes but calls
plete transactions; incomplete transactions are disdardesync for every write. In each workload, we increase
Each update in a completed transaction is simply replaytéeé total amount of data that it writes and observe how the

140 Data —— Data ——
70 Ordered —=—

Writeback ——
60 5

(2 —=— t2 ——

Fixed-location data (MB)
™
3
Fixed-location data (MB)
Fixed-location data (MB)

into the fixed-place ext2 structures. behavior of ext3 changes.
)] Our results are shown in Figure 3. The top three
3.2 Analysis of ext3 with SBA graphs plot the achieved bandwidth for the three work-

We now perform a detailed analysis of ext3 using our SBAads; within each graph, we compare the three different
framework. Our analysis is divided into three categorigeurnaling modes and ext2. From these bandwidth graphs

we make four observations. First, the achieved bandwidthlly, SBA analysis reveals that synchronous 4 KB writes
is extremely sensitive to the workload: as expected, a s@-not perform well, even in data journaling mode. Forc-
guential workload achieves much higher throughput thang each small 4 KB write to the log, even in logical
a random workload and callingsync more frequently sequence, incurs a delay between sequential writes (not
further reduces throughput for random workloads. Seshown) and thus each write incurs a disk rotation.
ond, for sequential traffic, ext2 performs slightly betteLoncurrency: We now report our results from running
than the highest performing ext3 mode: there is a smabrkloads containing multiple processes. We construct
but noticeable cost to journaling for sequential streamesworkload containing two diverse classes of traffic: an
Third, for all workloads, ordered mode and writebacksynchronous foreground process in competition with a
mode achieve bandwidths that are similar to ext2. Finallyackground process. The foreground process writes out a
the performance of data journaling is quite irregular, varg0 MB file without callingf sync, while the background
ing in a sawtooth pattern with the amount of data writteprocess repeatedly writes a 4 KB block to a random lo-
These graphs of file system throughput allow us to comation, optionally call§ sync, and then sleeps for some
pare performance across workloads and journaling modesyiod of time {.e., the “sync interval”). We focus on data
but do not enable us to infer tleauseof the differences. journaling mode, but the effect holds for ordered journal-
To help us infer the internal behavior of the file system, vieg mode too (not shown).
apply semantic analysis to the underlying block stream;In Figure 4 we show the impact of varying the mean
in particular, we record the amount of journal and fixedsync interval” of the background process on the perfor-
location traffic. This accounting is shown in the bottormance of the foreground process. The first graph plots
two rows of Figure 3. the bandwidth achieved by the foreground asynchronous
The second row of Figure 3 quantifies the amount pfocess, depending upon whether it competes against an
traffic flushed to the journal and help us to infer the everdsynchronous or synchronous background process. As ex-
which cause this traffic. We see that, in data journalipgcted, when the foreground process runs with an asyn-
mode, the total amount of data written to the journal &hronous background process, its bandwidth is uniformly
high, proportional to the amount of data written by thkigh and matches in-memory speeds. However, when the
application; this is as expected, since both data and métaeground process competes with a synchronous back-
data are journaled. In the other two modes, only metadgtaund process, its bandwidth drops to disk speeds.
is journaled; therefore, the amount of traffic to the journal The SBA analysis in the second graph reports the
is quite small. amount of journal data, revealing that the more frequently
The third row of Figure 3 shows the traffic to the fixe¢he background process caflsync, the more traffic is
location. For writeback and ordered mode the amounts#nt to the journal. In fact, the amount of journal traf-
traffic written to the fixed location is equal to the amouniic is equal to the sum of the foreground and background
of data written by the application. However, in data jouprocess traffic written in that interval, not that of only the
naling mode, we observe a stair-stepped pattern in #hgckground process. This effect is due to the implemen-
amount of data written to the fixed location. For exation of compound transactions in ext3: all file system
ample, with a file size of 20 MB, even though the praspdates add their changes to a global transaction, which
cess has calletisync to force the data to disk, no datds eventually committed to disk.
is written to the fixed location by the time the applica- This workload reveals the potentially disastrous conse-
tion terminates; because all data is logged, the expecgg@nces of grouping unrelated updates into the same com-
consistency semantics are still preserved. However, eygjund transaction: all traffic is committed to disk at the
though it is not necessary for consistency, when the &ame rate. Thus, even asynchronous traffic must wait for
plication writes more data, checkpointing does occur &inchronous updates to complete. We refer to this nega-
regular intervals; this extra traffic leads to the sawtoofiye effect astangled synchrongnd explore the benefits
bandwidth measured in the first graph. In this particgf untangling transactions in Section 3.3.3 using STP.
lar experiment with sequential traffic and a journal size of
50 MB, a checkpoint occurs when 25 MB of data is wri3.2.2 Journal Commit Policy
ten; we explore the relationship between checkpoints aie next explore the conditions under which ext3 commits
journal size more carefully in Section 3.2.3. transactions to its on-disk journal. As we will see, two
The SBA graphs also reveal why data journaling modactors influence this event: the size of the journal and the
performs better than the other modes for asynchron@gstings of the commit timers.
random writes. With data journaling mode, all data is In these experiments, we focus on data journaling
written first to the log, and thus even random writes baiode; since this mode writes both metadata and data to
comelogically sequential and achieve sequential banthe journal, the traffic sent to the journal is most easily
width. As the journal is filled, checkpointing causes exseen in this mode. However, writeback and ordered modes
tra disk traffic, which reduces bandwidth; in this partic.commit transactions using the same policies. To exer-
lar experiment, the checkpointing occurs near 23 MB. Fiise log commits, we examine workloads in which data

Bandwidth Bandwidth

100 90
Background process does not call fsync —— 80 |-
L Background process calling fsync ——

e e A e e e L S
60

Journal size = 20MB ——
Journal size = 40MB ——
Journal size = 60MB —=—
Journal size = 80MB ——

80

40 -

Bandwidth (MB/s)
Bandwidth (MB/s)

20 -

0 0
0 2000 4000 6000 8000 10000 12000 0 10 20 30 40 50
Sync interval (milliseconds) Amount of data written (MB)
Amount of journal writes Amount of journal writes
6 7
0 Background process does not call fsync —— 0 Journal size = 20MB ——
50 Background process calls fsync —— 60 Journal size = 80MB ——

50
40
30
20
10t

0
0 2000 4000 6000 8000 10000 12000 0 10 20 30 40 50

Sync interval (milliseconds) Amount of data written (MB)

40 |
30 |-
20

Journal data (MB)
Journal data (MB)

10

0

Figure 4:Basic Behavior for Concurrent Writes in ext3. Two Figure 5: Impact of Journal Size on Commit Policy in ext3.
processes compete in this workload: a foreground procegts wiT he topmost figure plots the bandwidth of data journaling enod
ing a sequential file of size 50 MB and a background processder different-sized file writes. Four lines are plottegrne
writing out 4 KB, optionally callingf sync, sleeping for the senting four different journal sizes. The second graph s
“sync interval”, and then repeating. Along the x-axis, we inamount of log traffic generated for each of the experimewis (f
crease the sync interval. In the top graph, we plot the badtiwi clarity, only two of the four journal sizes are shown).

achieved by the foreground process in two scenarios: wih th

background process either calling or not calliigync after mon is responsible for flushing dirty buffers to disk; the

each write. In the bottom graph, the amount of data written {goyrnal daemon is specialized for ext3 and is respon-
disk during both sets of experiments is shown. . e .
sible for committing ext3 transactions. The strategy for

is not explicitly forced to disk by the applicationd,, the €xt2isto flush metadata frequent.g, every 5 seconds)
process does not cdllsync); further, to minimize the while delaying data writes for a longer time.g, every
amount of metadata overhead, we write to a single file.30 seconds). Flushing metadata frequently has the advan-
Impact of Journal Size: The size of the journal is at@ge thgt the file system can approach FFS-Ilke_conS|s-
configurable parameter in ext3 that contributes to whiCy without a severe performance penalty; delaying data
updates are committed. By varying the size of the jourr}%ﬂ'tes has the ac_ivantage that flle_s that are deleted quickly
and the amount of data written in the workload, we c&lp not tax the disk. Thus, mapping the ext2 goals to the
infer the amount of data that triggers a log commit. Fi§Xt3 timers leads to default values of 5 seconds for the
ure 5 shows the resulting bandwidth and the amount pdate metadata timer, 5 seconds fo_r the kjournal timer,
journal traffic, as a function of file size and journal sizénd 30 seconds for the kupdate data timer.
The first graph shows that when the amount of data writ-We measure how these timers affect when transactions
ten by the application (to be precise, the number of dirgye committed to the journal. To ensure that a specific
uncommitted buffers, which includes both data and metémer influences journal commits, we set the journal size
data) reache§ the size of the journal, bandwidth drop#o be sufficiently large and set the other timers to a large
considerably. In fact, in the first performance regime, tivalue {.e., 60 s). For our analysis, we observe when the
observed bandwidth is equal to in-memory speeds. first write appears in the journal. Figure 6 plots our results

Our semantic analysis, shown in the second graph, Ya&rying one of the timers along the x-axis, and plotting the
ports the amount of traffic to the journal. This graph réime that the first log write occurs along the y-axis.
veals that metadata and data are forced to the journal whemhe first graph and the third graph show that the kup-
it is equal to} the journal size. Inspection of Linux ext3date daemon metadata commit timer and the kjournal dae-
code confirms this threshold. Note that the thresholdrison commit timer control the timing of log writes: the
the same for ordered and writeback modes (not showtidita points along = z indicate that the log write oc-
however, it is triggered much less frequently since onburred precisely when the timer expired. Thus, traffic is
metadata is logged. sent to the log at the minimum of those two timers. The
Impact of Timers: In Linux 2.4 ext3, three timers havesecond graph shows that the kupdate daemon data timer
some control over when data is written: the metadad@es notinfluence the timing of log writes: the data points
commit timer and the data commit timer, both manag@d€e not correlated with the x-axis. As we will see, this
by the kupdate daemon, and the commit timer manad#ger influences when data is written to its fixed location.
by the kjournal daemon. The system-wide kupdate ddeteraction of Journal and Fixed-Location Traffic:

Sensitivity to kupdated metadata timer Write ordering in ext3
30

14 Fixed location ——
Journal ——

25 -
20 -

Journal write time (seconds)
Request queue (4KB blocks)

15 8l
6|

10 +
4l

51 2

0 0 | / !

0 5 10 15 20 25 30 10.3 10.35 10.4 10.45 10.5 10.55 10.6
kupdated metadata timer value (seconds) Time (seconds)
Sensitivity to kupdated data timer Figure 7: Interaction of Journal and Fixed-Location Traffic

in ext3. The figure plots the number of outstanding writes to
the journal and fixed-location disks. In this experiment,rare

five processes, each of which issues 16 KB random synchronous
writes. The file system has a 50 MB journal and is running in
ordered mode; the journal is configured to run on a separate

Journal write time (seconds)

disk.
Amount of fixed location writes
40 -
= Sync size = IMB ——
S 3¢ Sync size = 15MB ——
kupdated data timer value (seconds) s 30+t Sync size = 20MB
k]
L . . 25
Sensitivity to kjournald timer ’é’ 20
5 L
§ 25 % 10 -
2 20t E 5¢
g 0
'g 15 0 5 10 15 20 25 30 35 40
’g 10 Amount of data written (MB)
E 5 Checkpointing
3 80
=] 0 Sync size = IMB ——
0 5 10 15 20 25 30 70 + Sync size = 15MB ——
kjournald timer value (seconds) 60 Sync size = 20MB

Figure 6: Impact of Timers on Commit Policy in ext3. In jﬁj I

each graph, the value of one timer is varied across the x-axig zo|
and the time of the first write to the journal is recorded along® 20
the y-axis. When measuring the impact of a particular tirmer, 10 | it otdounal Size
set the other timers to 60 seconds and the journal size to 50 MB o
so that they do not affect the measurements.

ace (MB)

5 10 15 20 25 30 35 40
Amount of data written (MB)

The timing between writes to the journal and to the fixegigure 8: Impact of Journal Size on Checkpoint Policy in
location data must be managed carefully for consistenext3. We consider a workload where a certain amount of data
In fact, the difference between writeback and order&’f indicated by the x-axis value) is written sequentialith

P g sync issued after every 1, 15, or 20 MB. The first graph
mode is in this timing: writeback mode does not enfor%%es SBA to plot the amount of fixed-location traffic. Thersgco

any ordering between the two, whereas ordered mode giph uses SBA to plot the amount of freespace in the journal.
sures that the data is written to its fixed location before the . . R
X S . ; arallelism We will use STP to fix this timing problem
commit block for that transaction is written to the JournaE .
. ih Section 3.3.4.

When we performed our SBA analysis, we found a perfor-
mance deficiency in how ordered mode is implemented3.2.3 Checkpoint Policy

We consider a workload that synchronously writes\&e next turn our attention to checkpointing, the process
large number of random 16 KB blocks and use the SB# writing data to its fixed location within the ext2 struc-
driver to separate the traffic to the journal versus the fixetdres. We will show that checkpointing in ext3 is again a
location data. Figure 7 plots the number of concurrefuinction of the journal size and the commit timers, as well
writes to each data type over time. The figure shows tte&t the synchronization interval in the workload. We focus
writes to the journal and fixed-place datamiat overlap. on data journaling mode since it is the most sensitive to
Specifically, ext3 issues the data writes to the fixed Iurnal size. To understand when checkpointing occurs,
cation and waits for completion, then issues the journaé construct workloads that periodically force data to the
writes to the journal and again waits for completion, arjdurnal (.e., call f sync) and we observe when data is
finally issues the final commit block and waits for comsubsequently written to its fixed location.
pletion. Inspection of the ext3 code confirms this obserdapact of Journal Size: Figure 8 shows our SBA results
tion. However, the first wait is not needed for correctnesss a function of file size and synchronization interval for
In those cases where the journal is configured on a sepsingle journal size of 40 MB. The first graph shows the
arate device, this extra wait wait can severely limit commount of data written to its fixed ext2 location at the end
currency and performance. Thus, ext3 Fasely limited of each experiment. We can see that the point at which

Sensitvity to kupdated data timer timing behavior is the largest potential performance dif-

60 Log writes -+ ferentiator between ordered and writeback modes. Inter-
B so; Fixed-location writes = estingly, this frequent flushing has a potential advantage;
g o7 .. by forcing data to disk in a more timely manner, large
E o P et disk queues can be avoided and overall performance im-
g e proved [18]. The disadvantage of early flushing, however,
e I O | is that temporary files may be written to disk before sub-
%o 5 10 15 20 25 30 sequent deletion, increasing the overall load on the 1/O
kupdated data timer value (seconds) System i

Figure 9: Impact of Timers on Checkpoint Policy in ext3.

The figure plots the relationship between the time that data3-2-4 Summary of Ext3 o
first written to the log and then checkpointed as dependent dising SBA, we have isolated a number of features within
the value of the kupdated data timer. The scatter plot shbes gxt3 that can complicate obtaining the best performance.

;eﬁﬂugsogggglt(iglg g:’;orzcr;r‘géty}gu%oéﬁfgs g‘g‘éési;“l?s”ég@fﬁrth eThe journaling mode that delivers the best performance

other timers set to 5 seconds and a journal size of 50 MB. depends strongly on the workload. It is well known that

checkpointing occurs varies across the three sync int@’ndom worklgads perform better .W'th nggmg or data
vals; for example, with a 1 MB sync intervdld., when journaling [25]; however, the relationship between the

data is forced to disk after every 1 MB worth of writes)Slze of the journal and the amount of data written by

checkpoints occur after approximately 28 MB has begﬁe application can have an even larger impact on perfor-
committed to the log, whereas with a 20 MB sync intervemance'

checkpoints occur after 20 MB. To illustrate what triggers'Ext3 implements compound transactions in which un-

a checkpoint, in the second graph, we plot the amodﬁ{ated concurrent updates are placed into the same trans-

of journal free space immediately preceding the chec?(gtion‘ The result is that all traffic in a transaction is com-
point. By correlating the two graphs, we see that Cheéwk[itted to disk at the same rate, which results in disastrous

pointing occurs when the amount of free space is betw e;{formance forasynchronous traffic combined with syn-

1-th and 1-th of the journal size. The precise fractiorf rlonouds tragnc. q 3 d) | th
depends upon the synchronization interval, where smalle’rtn otr et;le _mo el, exd p odes Ino (()jvetr apSany_f(_) I €
sync amounts allow checkpointing to be postponed ungiftes to the journal and fixed-place data. Speciiically,
there is less free space in the jourhalle have confirmed ext3 issues the data writes to the fixed location and waits

this same relationship for other journal sizes (not show?r completion, then issues the journal writes to the jour-

Impact of Timers: We examine how the system timer al and again waits for completion, and finally issues the

impact the timing of checkpoint writes to the fixed Iocafnal commit block and waits for completion; however, the

tions using the same workload as above. Here, we v. :’rglt wait is not needed for correctness. When the jour-

the kupdate data timer while setting the other timers B! 1S ptla(f:ed 0“ Tsepargte der\]nce, th'sf falsely limits the
five seconds. Figure 9 shows how the kupdated data tipfEIOUNt OF parallefism and can harm performance. -
eIn ordered and data journaling modes, when a timer

impacts when data is written to its fixed location. Firs h ta-data to disk th dina dat th
as seen previously in Figure 6, the log is updated after wenes meta-dala to disk, Ine corresponding data must be

. - ; ; - ushed as well. The disadvantage is that temporary files
five second timers expire. Then, the checkpoint write Oégy be written to disk, increasing the /0 load.

curs later by the amount specified by the kupdated ot
timer, at a five second granularity; further experiments3 Evyolving ext3 with STP

(not shown here) reveal tha_t this granularity is controllgf this section, we apply STP and use a wider range of
by the kupdated metadata timer. workloads and traces to evaluate various modifications to

before or at the time of metad.ata writes. Thiigthdata ber of improvements for ext3, which we can quantify
and metadata are flushed to disk frequently. Note that thig, sTP: the value of using different journaling modes

depending upon the workload, having separate transac-
1The exact amount of free space that triggers a checkpoinotis #ions for each update, and overlapping pre-commit jour-
straightforward to derive for two reasons. First, ext3 rese some nal writes with data updates in ordered mode. Finally, we
amount of journal space for overhead such as descriptor amind |;5e STP to evaluate diﬁerentialjournaling, in which block

blocks. Second, ext3 reserves space in the journal for tiergly com- . . .

mitting transactioni(e., the synchronization interval). Although we havedlﬁerences are written to the Joumal'

derived the free space function more precisely, we do néttieevery 3.3.1 Journal Location

detailed information is particularly enlightening; thiene, we simply ~ "~

say that checkpointing occurs when free space is somewleereeen OUr first experiment with STP quantify the impact of
1-th and-th of the journal size. changing a simple policy: the placement of the journal.

Bandwidth in Ordered Journaling Mode Modified write ordering
0.3

Default ext3 with journal at beginning —— 14 - Fixed location ——
0.25 | Modified ext3 with journal at middle —— Journal ——
STP with journal at middle —— 12 -

02 r
0.15

0.1

Bandwidth (MB/s)

0.05

Request queue (4KB blocks)

0

0 10 20 30 40 50 60 70 0.3 10.35 10.4 10.45 10.5 10.55 10.6
File number Time (seconds)

Figure 10:Improved Journal Placement with STP.We com- Figure 12: Changing the Interaction of Journal and Fixed-

pare three placements of the journal: at the beginning of thecation Traffic with STP. The same experiment is run as in
partition (the ext3 default), modeled in the middle of thediys- Figure 7; however, in this run, we use STP to issue the pre-
tem using STP, and in the middle of the file system. 50 MB fit@snmit journal writes and data writes concurrently. We plat

are created across the file system; a file is chosen, as ireticaSTP emulated performance, and also made this change to ext3
by the number along the x-axis, and the workload issues 4 KBectly, obtaining the same resultant performance.

synchronous writes to that file.

3.3.2 Journaling Mode
o pandwdh As shown in Section 3.2.1, different workloads perform

80 W% better with different journaling modes. For example, ran-
ol dom writes perform better in data journaling mode as the
random writes are written sequentially into the journal,
but large sequential writes perform better in ordered mode
as it avoids the extra traffic generated by data journal-

‘ ‘ ‘ ‘ ‘ ing mode. However, the journaling mode in ext3 is set
0 2000 4000 6000 8000 10000 12000

Sync interval (millseconds) at mount time and remains fixed until the next mount.

Figure 11: Untangling Transaction Groups with STP. This USing STP, we evaluate a new adaptive journaling mode
experiment is identical to that described in Figure 4, witreo that chooses the journaling mode for each transaction ac-
addition: we show performance of the foreground proceshk witording to writes that are in the transaction. If a transac-
untangled transactions as emulated with STP. tion is sequential, it uses ordered journaling; otherwitse,
uses data journaling.
The default ext3 creates the journal as a regular file at therg demonstrate the potential performance benefits of
beginning of the partition. We start with this policy beadaptive journaling, we run a portion of a trace from HP
cause we are able to validate STP: the results we obtgiibs [23] and compare ordered mode, data journaling
with STP are quite similar to those when we implemefiode, and our adaptive approach. The trace completes
the change within ext3 itself. in 83.39 seconds and 86.67 seconds, in ordered and data
We construct a workload that stresses the placemen{®naling modes, respectively; however, with STP adap-
the journal: a 4 GB partition is filled with 50 MB files andive journaling, the trace completes in only 51.75 seconds.
the benchmark process issues random, synchronous 4%g§ause the trace has both sequential and random write
writes to a chosen file. In Figure 10 we vary which file iBhases, adaptive journaling performs the best.
chosen along the x-axis. The first line in the graph shows
the performance for ordered mode in default ext3: bar@l3.3 Transaction Grouping
width drops by nearly 30% when the file is located fafin,x ext3 groups all updates into system-wide com-
from the journal. SBA analysis (not shown) confirms thaf, nd transactions and commits them to disk periodically.
this performance drop occurs as the seek time increaggjyever, as we have shownin 3.2.1, if just a single update
between the writes to the file and the journal. stream is synchronous, it can have a dramatic impact on
To evaluate the benefit of placing the journal in the midhe performance of other asynchronous streams, by trans-
dle of the disk, we use STP to remap blocks. For valigi@rming in-memory updates into disk-bound ones.
tion, we also coerce ext3 to allocate its journal in the mid- Using STP, we show the performance of a file system
dle of the disk, and compare results. Figure 10 shows thiztuntangleghese traffic streams, only forcing the pro-
the STP predicted performance is nearly identical to thisss that issues thfesync to commit its data to disk.
version of ext3. Furthermore, we see that the worst-cdsgure 11 plots the performance of an asynchronous se-
behavior is avoided; by placing the journal in the middiguential stream in the presence of a random synchronous
of the file system instead of at the beginning, the longessteam. Once again, we vary the interval of updates from
seeks across the entire volume are avoided during stire synchronous process, and from the graph, we can see
chronous workloads.e., workloads that frequently seekthat segregated transaction grouping is effective; the-asy
between the journal and the ext2 structures). chronous I/O stream is unaffected by synchronous traffic.

Bandwidth (MB/s)

10

3.3.4 Timing First, the two file systems use different on-disk struc-
We show that STP can quantify the cost of falsely limiures to track their fixed-location data. Ext3 uses the same
ited parallelism, as discovered in 3.2.2, where pre-commituctures as ext2; for improved scalability, ReiserFSuse
journal writes are not overlapped with data updates in @B+ tree, in which data is stored on the leaves of the tree
dered mode. With STP, we modify the timing so thand the metadata is stored on the internal nodes. Since
journal and fixed-location writes are all initiated simulthe impact of the fixed-location data structures is not the
taneously; the commit transaction is written only after tHecus of this paper, this difference is largely irrelevant.
previous writes complete. We consider the same work-Second, the format of the journal is slightly different.
load of five processes issuing 16 KB random synchrondosext3, the journal can be a file, which may be anywhere
writes and with the journal on a separate disk. in the partition and may not be contiguous. The ReiserFS
Figure 12 shows that STP can model this implemejournalis not a file and is instead a contiguous sequence of
tation change by modifying the timing of the requestblocks at the beginning of the file system; as in ext3, the
For this workload, STP predicts an improvement of aboReiserFS journal can be put on a different device. Further,
18%; this prediction matches what we achieve when eX@&iserFS limits the journal to a maximum of 32 MB.
is changed directly. Thus, as expected, increasing thelhird, ext3 and ReiserFS differ slightly in their journal
amount of concurrency improves performance when thentents. In ReiserFS, the fixed locations for the blocks in
journal is on a separate device. the transaction are stored not only in the descriptor block
335 Journal Contents but also in the commit blqck. Also, l_JnIike ext3, Reis-
Ext3 uses phvsical loadi d writ blocks in th erFS uses only_ one O!escnptor block in every compound
physical logging and writes new blocks in their
entirety to the log. However, if whole blocks are jour_ransactlc_m,whlch I|m_|ts the number of blocks that can be
naled irrespective of how many bytes have changed in ﬁ]rguped In a transaction.

block, journal space fills quickly, increasing both commi{ 2 Semantic Analysis of ReiserFS
and checkpoint frequency. . o _ We have performed identical experiments on ReiserFS as
Using STP, we investigatelifferential journaling, \ye have on ext3. Due to space constraints, we present

where the file system writes block differences to the jousny those results which reveal significantly different be-
nal instead of new blocks in their entirety. This apyavior across the two file systems.

proach can potentially reduce disk traffic noticeably, if
dirty blocks are not substantially different from their pre#.2.1 Basic Behavior: Modes and Workload
vious versions. We focus on data journaling mode, asQualitatively, the performance of the three journaling
generates by far the most journal traffic; differential joumodes in ReiserFS is similar to that of ext3: random
naling is less useful for the other modes. workloads with infrequent synchronization perform best

To evaluate whether differential journaling matters fovith data journaling; otherwise, sequential workloads
real workloads, we analyze SBA traces underneath t@enerally perform better than random ones and write-
database workloads modeled on TPC-B [28] and TPBack and ordered modes generally perform better than
C [29]. The former is a simple application-level impledata journaling. Furthermore, ReiserFS groups concur-
mentation of a debit-credit benchmark, and the latter a fent transactions into a single compound transaction, as
alistic implementation of order-entry built on top of Pos#id ext3. The primary difference between the two file
gres. With data journaling mode, the amount of dagstems occurs for sequential workloads with data jour-
written to the journal is reduced by a factor of 200 foraling. As shown in the first graph of Figure 13, the
TPC-B and a factor of 6 under TPC-C. In contrast, féhroughput of data journaling mode in ReiserFS does not
ordered and writeback modes, the difference is mininfallow the sawtooth pattern. An initial reason for this is
(less than 1%); in these modes, only metadata is writterf@ind through SBA analysis. As seen in the second and
the log, and applying differential journaling to said metdhird graphs of Figure 13, almost all of the data is written
data blocks makes little difference in total I/O volume. not only to the journal, but is also checkpointed to its in-

. place location. Thus, ReiserFS appears to checkpoint data

4 ReiserFS much more aggressively than ext3, which we will explore
We now focus on a second Linux journaling filesysterm Section 4.2.3.
ReiserFS. In this section, we focus on the chief differenc
between ext3 and ReiserFS. Due to space constraints
do not use STP to explore changes to ReiserFS.

2 Journal Commit Policy
We explore the factors that impact when ReiserFS com-
mits transactions to the log. Again, we focus on data jour-
4.1 Background naling, since it is the most sensitive. We postpone explor-
The general behavior of ReiserFS is similar to ext3. Fimg the impact of the timers until Section 4.2.3.
example, both file systems have the same three journalingVe previously saw that ext3 commits data to the log
modes and both have compound transactions. Howewenen approximatelg of the log is filled or when a timer
ReiserFS differs from ext3 in three primary ways. expires. Running the same workload that does not force

11

Bandwidth in Reiserfs Amount of journal writes in Reiserfs Amount of fixed-location writes in Reiser

Data —— 140 Data ——
Ordered —— Ordered ——
Writeback —— Writeback —=—

140 Data ——
Ordered ——
Writeback ——

10 M 60 60
40 T 40

5
20 20
0 0 0

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Amount of data written (MB) Amount of data written (MB) Amount of data written (MB)

Figure 13:Basic Behavior for Sequential Workloads in ReiserFSWithin each graph, we evaluate the three ReiserFS jourgalin
modes. We consider a single workload in which the size ofahaentially written file is increased along the x-axis. Egcaph
examines a different metric: the first hows the achieved wadtt; the second uses SBA to report the amount of journ#idrahe
third uses SBA to report the amount of fixed-location trafftee journal size is set to 32 MB.

Bandwidth (MBJs)

Journal data (MB)
®
8
Fixed-location data (MB)
™
3

Amount of fixed-location writes Sensitivity to kreiserfsd journal timer

@ 70r Sync size = 64KB —— 80 . Log writes ~ +
s L Sync size = 128KB —— 2 70t Fixed-location writes ~ x
< 60 Sync size = 512KB —— i
© 50+ Sync size = 1024KB —=— 8 60 . X
° g 50t wx %
é 40 g 20| o X x % x X
§ 30 - oo o £ 30,XXXXXXXXXXXX XXX x
Z 20+ / £ L
3 £ 20
X 10 / = 10 +
S s fj oenntnd ‘ NEEEFE Ll S T LRSS E ST LSS

0 10 20 30 40 50 0 5 10 15 20 25 30

Amount of data written (MB) kreiserfsd timer value (seconds)
Amount of fixed-location writes Figure 15:Impact of Timers in ReiserFS.The figure plots the
s ® Syncsize = 32KB —— relationship between the time that data is written and theiea
s 0y Sy et 1oakR of the kreiserfsd timer. The scatter plot shows the restilisud-
§ a7 f tiple (30) runs. The process that is running writes 1 MB ofadat
g 207 (nof sync); data journaling mode is used, with other timers set
g 157 [_‘ to 5 seconds and a journal size of 32 MB.
S 10l
E st] I Our results are shown in Figure 14. The first graph
0 - i i
c s — = po— po shows the amount of d.ata checkpomted as a fl_mctlon of
Number of transactions the amount of data written; in all cases, data is check-

Figure 14: Impact of Joumal Size and Transactions on POinted beforé of the journal is filled. The second graph
Checkpoint Policy in ReiserFS We consider workloads whereshows the amount of data checkpointed as a function of
data is sequentially written and drsync is issued after a spec- the number of transactions. This graph shows that data is

ified amount of data. We use SBA to report the amount of fixegeckpointed at least at intervals of 128 transactions; run
location traffic. In the first graph, we vary the amount of data.

written; in the second graph, we vary the number of transaP!ng @ similar workload on ext3 _reveals no relatior_lship

tions, defined as the number of callsfteync. between the number of transactions and checkpointing.
data to diskite., does does not callsync) on ReiserFS ;2;2 E:ésg:gsscgf;?g\lfvpfll\r;t; g?ﬁhz:iﬂz\rlsgngrg?g:g
and performing SBA analysis, we find that ReiserFS use P b

: . - “~gctions in the journal.
a different threshold: depending upon whether the ournaﬁ
b gup J s with ext3, timers control when data is written to

size s below or above 8 MB, ReiserS commits data Whﬁ1e journal and to the fixed locations, but with some dif-

about 450 blocksi, 1.7 MB) or 900 blocksi(e., 3.6 Eerences: in ext3, the kjournal daemon is responsible for

MB) are written. Given that ReiserFS limits journal siz iting t " h in ReiserES. the krei
to at most 32 MB,thesefixedthresholdsappearsufﬁcieﬁ?mmI Ing transactions, whereas In ReISerrs, e Kreis-

Finally, we note that ReiserFS also has falsely Iimite‘%ﬁ daemo_n ha_s this role. . Figure 15 shows Fhe time at
parallelism in ordered mode. Like ext3, ReiserFS forc y'Ch data is written to the journal and to the fixed loca-

the data to be flushed to its fixed location before it issuta. 2° the kre|serfs tlmer Is increased; we m.ak.e two con-
any writes to the journal, clusions. First, the log writes always occur within the first

five seconds of the data write by the application, regard-
4.2.3 Checkpoint Policy less of the timer value. Second, the fixed location writes
We also investigate the conditions which trigger Reiserf@cur only when the elapsed time is both greater than 30
to checkpoint data to its fixed-place location; this poseconds and a multiple of the kreiserfs timer value. Thus,
icy is more complex in ReiserFS. In ext3, we found th#te ReiserFS timer policy is simpler than that of ext3.
data was checkpointed when the journal wa® 3 full. o

In ReiserFS, the point at which data is checkpointed -3 Finding Bugs

pends not only on the freespace in the journal, but also 8BA analysis is useful not only for inferring the poli-
the number of concurrent transactions. We again considars of filesystems, but also for finding cases that have
workloads that periodically force data to the journal biyot been implemented correctly. With SBA analysis, we
callingf sync at different intervals. have found a number of problems with the ReiserFS im-

12

plementation that have not been reported elsewhere.trimsactions are grouped: for example, if the write commit
each case, we identified the problem because the Si&ords are on the same log page.
driver did not observe some disk traffic that it expected. Finally, there are no commit timers in JFS. Similar to
To verify these problems, we have also examined the cade3 and Reiserfs, in JFS, the fixed-location writes happen
to find the cause and have suggested corresponding fixdgnever the kupdate daemon’s timer expires. However,
to the ReiserFS developers. the journal writes are never triggered by the timer: jour-
eIn the first transaction after a mount, theync call nal writes are indefinitely postponed until there is another
returns before any of the data is written. We tracked tHiggger such as memory pressure or an unmount opera-
aberrant behavior to an incorrect initialization. tion. This behavior limits reliability, as a crash can resul
eWhen a file block is overwritten in writeback mode, it§1 data loss even for data that was written minutes or hours
stat information is not updated. This error occurs due td&fore.
failure to update the inode’s transaction information.
¢When committing old transactions, dirty data is not a@ R.elated. Work o
ways flushed. We tracked this to erroneously applying’@urnaling Studies: Journaling file systems have been
condition to prevent data flushing during journal replay.Studied in detail. Most notably, Seltzet al. [26] com-
elrrespective of changing the journal thread’s wake (}'€ two variants of a journaling FFS to soft updates [11],

interval, dirty data is not flushed. This problem occufdifferent technique for managing metadata consistency
due to a simple coding error. for file systems. Although the authors present no direct

observation of low-level traffic, they are familiar enough

5 The IBM Journaled File System with the systems (indeed, they are the implementors!) to
explain behavior and make “semantic” inferences. For ex-

In thls_sectlon, we desc_rlbe our experience pgrformlngaﬁ]me, to explain why journaling performance drops in a
preliminary SBA analysis of the Journaled File Systefb|ete benchmark, the authors report that the file system is
(JFS). We began with a rudimentary understanding of Jigrced to read the first indirect block in order to reclaim
from what we were able to obtain through documentaye gisk blocks it references” ([26], Section 8.1). A tool
tion [3]; for example, we knew that the journal is locategy,ch as SBA makes such expert observations more readily
by default at the end of the partition and is treated as cQfyjlable to all. Another recent study compares a range of
tiguous sequence of blocks and that one cannot spegifyyx file systems, including ext2, ext3, ReiserFS, XFS,
the journaling mode. and JFS [7]. This work evaluates which file systems are
Due to the fact that we knew less about this file syggstest for different benchmarks, but gives little exptana
tem before we began, we found we needed to apply a ngyy as towhyone does well for a given workload.
analysis technique as well: in some cases we filtered @ije System Benchmarks: There are many popular file
traffic and then rebooted the system so that we could infgistem benchmarks, such as 10zone [19], Bonnie [6], Im-
whether the filtered traffic was necessary for consistengynch [17], the modified Andrew benchmark [20], and
or not. From this basic starting point, and without exanpgstMark [14]. Some of these (I0Zone, Bonnie, Im-
ining the JFS code, we were able to learn a numberdnch) perform synthetic read/write tests to determine
interesting properties about JFS. throughput; others (Andrew, Postmark) are intended to
First, we inferred that JFS uses ordered journalimgodel “realistic” application workloads. Uniformly, all
mode. Due to the small amount of traffic to the journal, fheasure overall throughput or runtime to draw high-level
was obvious that it was not employing data journaling. onclusions about the file system. In contrast to SBA,
differentiate between writeback and ordered modes, f@éne are intended to yield low-level insights about the in-
both synchronous and asynchronous transactions we nal policies of the file system.
served that the ordering of writes matched that of orderedPerhaps the most related to our work is Chen and Patter-
mode. son’s self-scaling benchmark [8]. In this work, the bench-
Second, we determined that JFS does logging at tharking framework conducts a search over the space of
record level. That is, whenever an inode, index tregossible workload parametems.g, sequentiality, request
or directory tree structure changes, only that structuresige, total workload size, and concurrency), and hones in
logged instead of the entire block containing the structutsn interesting parts of the workload space. Interestingly,
As aresult, JFS writes fewer journal blocks than ext3 asdme conclusions about file system behavior can be drawn
ReiserFS for the same operations. from the resultant output, such as the size of the file cache.
Third, JFS does not by default group concurrent u@ur approach is not nearly as automated; instead, we con-
dates into a single compound transaction. Running tsteuct benchmarks that exercise certain file system behav-
same experiment as we performed in Figure 4, we see tioas in a controlled manner.
the bandwidth of the asynchronous traffic is very high iFile System Tracing: Many previous studies have traced
respective of whether there is a synchronous traffic in tfile system activity. For example, Zhetial.[35], Ouster-
background. However, there are circumstances in whicbutet al. [21], Bakeret al. [2], and Roselliet al. [24]

13

all record various file system operations to later dedugg 1. Bray. ~ The Bonnie File System Benchmark.
file-level access patterns. Vogels [33] performs a simi- h“""’WWW'teX‘“a"ty'°°m“;°””'e" - .
[7]1 R.Bryant, R. Forester, and J. Hawkes. Filesystem Pexdoce and Scala-
lar study but inside the NT file system driver framework!l 5o & 25 5 EREENIX 02 Monterey, CA, June 2005,
where more information is avallable-gv mapped /O is [8] P. M. Chen and D. A. Patterson. A New Approach to I/O Pemiance
not missed. as it is in most other studies). A recent ex- Evaluation—Self-Scaling I/O Benchmarks, Predicted I/@fdteance. In
’ L . . SIGMETRICS "93pages 1-12, Santa Clara, CA, May 1993.
ample of a tracing infrastructure is TraceFS [1], whic A
. S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, &W.Mason, and
traces file systems at the VFS layer; however, Trace % R. N. Sidebotham. The Episode File SystemUBENIX Winter '92 pages
does not enable the low-level tracing that SBA prowdes] 43‘6|?' ja“ Zranc'sw'ICA* January 1992. o f
10] D. Ellard and M. I. Seltzer. New NFS Tracing Tools and fieiques for
Fma”y: Blaze [5] and later Ellaret al. [10} show hOW System Analysis. IfFAST '03 San Francisco, CA, April 2003.
low-level paCket t.racmg can be useful in an NFS_enV”O[h] G. R. Ganger and Y. N. Patt. Metadata Update PerformamEie Systems.
ment. By recording network-level protocol activity, net- In OSDI 94 pages 49-60, Monterey, CA, November 1994.
work file system behavior can be carefully ana|yzed_ TH#&! J. Gray and A. ReuterTransaction Processing: Concepts and Techniques
.. . Morgan Kaufmann, 1993.
type of packet analysis is analogous to SBA since they . _ _ o
. R. Hagmann. Reimplementing the Cedar File System Ukigging and
both positioned at a low-level and thus must reconstruct Group Commit. I'SOSP '87Austin, Texas, November 1987.

higher-level behaviors to obtain a complete view. [14] J. Katcher. PostMark: A New File System Benchmark. Téchl Report
. TR-3022, Network Appliance Inc., October 1997.
7 Conclus|ons [15] M.K.McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. AdtFile System

. . i for UNIX. ACM Transactions on Computer Syste2(8):181-197, August
As systems grow in complexity, there is a need for tech- 1984.

niques and approaches that enable both users and syﬁ@rm/l K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.cks The UNIX
. . . File System Check Program. Unix System Manager’'s ManuaB -B&D
architects to understand in detail how such systems 0p- virtuai VAX-11 Version, April 1986.
erate. We have presented semantic block-level analysis L. Mcvoy and C. Staelin. Imbench: Portable Tools for fBanance Analy-
(SBA), a new methodology for file system benchmarking S's: I"USENIX 1996San Diego, CA, January 1996.
that uses block-level tracing to provide insight about thé! 3. ¢ Mogul. A Better Update Policy. ISENIX Summer*34oston, MA,
internal behavior of a file SyStem- The block stream aﬁQ] W. Norcutt. The I0zone Filesystem Benchmark. httpaimwiozone.org/.
notated with semantic informatioe.g, whether a block [20] J. k. ousterhout. Why Aren't Operating Systems Getfiaster as Fast as
belongs to the journal or to another data Structure) is an Hardware? IrProceedings of the 1990 USENIX Summer Technical Confer-
ence Anaheim, CA, June 1990.
excellent source of information. TJ J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze Kdpfer, and J. G.
In this paper, we have focused on how the behavior of Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD Filesgam. In
SOSP '85pages 15-24, Orcas Island, WA, December 1985.
journaling file systems can be understood with SBA. In _ _
[92] H. Reiser. ReiserFS. www.namesys.com, 2004.
this case, using SBA is very straight-forward: the us _ _ .
é E. Riedel, M. Kallahalla, and R. Swaminathan. A Framewfor Evaluating
must know only how the Jouma| is allocated on disk. U Storage System Security. FAST '02 pages 14-29, Monterey, CA, January
ing SBA, we have analyzed in detail two journaling file EO(E- 3R Loreh and T E. And A Comatissiie S
. Roselli, J. R. Lorch, and T. E. Anderson. omparigbifFile System
systems in Linux: ext3 and ReiserFS. We also have ddﬁé Workloads. INUSENIX '0Q pages 41-54, San Diego, California, June 2000.
a preliminary analysis of Linux JFS. In all cases, we ha}é@ M. Rosenblum and J. Ousterhout. The Design and Impleéatien of a Log-
uncovered behaviors that would be difficult to discover gguFCtlged Fl"ig%yzste”ACM Transactions on Computer Systetf(1):26-
ebruary
usmg more conventional approaCheS [26] M. . Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, &. N. Soules,
We have also developed and presented semantic traceand C. A. Stein. Journaling Versus Soft Updates: Asynchusideta-data
playback (STP) which enables the rapid evaluation of frowection in Fie Systems. WSENIX 100 pages 71-84, San Diego, Cal-
new ideas for file _SyStemS-. Usmg STP, we have_ dem% A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishiy@nd G. Peck.
strated the potential benefits of numerous modifications Scalatggtg in the XFS File System. IISENIX 1996San Diego, CA, Jan-
to the current ext3 Impl.em.entatlon for real workloads a Transaction Processing Council. TPC Benchmark B Stah8pecification,
traces. Of these modifications, we believe the transaction Revision 3.2. Technical Report, 1990.
grouping mechanism within ext3 should most seriously] Transaction Processing Council. TPC Benchmark C StahSpecification,
reevaluated; an untangled approach enables asynchronouge'ision 5-2. Technical Report, 1992.
T. Ts’'o and S. Tweedie. Future Directions for the ExtBisystem. In
processes to obtain in-memory bandwidth, despite #i8 L5050 2 treede LU Dl
presence of other synchronous I/O streams in the SySte[gi} S. C. Tweedie. Journaling the Linux ext2fs File Systein. The Fourth
Refe rences Annual Linux ExppDurham, North Carolina, May 1998.
. : 32] S. C. Tweedie. EXT3, Journaling File System. olstraosrceforge.net/
[1] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File Systto Trace 2] reIease/OLSZOOO—ext3/OLSZOOO-gxt3.htm)ll, July 2000. g

Them All. In FAST '04 San Francisco, CA, April 2004. . .)
[33] W. Vogels. File system usage in Windows NT 4.0. 3O©SP '99 pages

[2] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Oudteut. Measure- = :

ments of a Distributed File System. 80OSP '9] pages 198-212, Pacific 93-109, Kiawah Istand Resort, SC, December 1.9991 .

Grove, CA, October 1991. [34] J.Yang, P. Twohey, D. Engler, and M. Musuvathi. UsingddbChecking to
[3] S.Best. JFS Log. How the Journaled File System perfowggihg. In Find Serious File System Errors. @SDI '04, San Francisco, CA, December

. : 2004.
Proceedings of the 4th Annual Linux Showcase and Conferpages 163— . _ .
168, Atlanta, 2000. [35] S. Zhou, H. D. Costa, and A. Smith. A File System Traciregage for
. . . Berkeley UNIX. InUSENIX Summer '84pages 407-419, Salt Lake City,
[4] S. Best. JFS Overview. www.ibm.com/developerworkséry/I-jfs.html, uT Juné 1984 Y 8%ag 4
2004. ' ’

[5] M. Blaze. NFS tracing by passive network monitoring. USENIX Winter
'92, pages 333-344, San Francisco, CA, January 1992.

14

