
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture 2

CS 640

Today’s lecture

• Application programming interface (sockets)
• For the project

– A mini-introduction to IP (Internet protocol)
– Details on project

CS 640

Berkeley Sockets

• Networking protocols are implemented as part
of the OS
– The networking API exported by most OS’s is the

socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point where an application attaches to the network
– Operations: creating connections, attaching to

network, sending/receiving data, closing.

2

CS 640

Connection-oriented example (TCP)
Server

socket()

bind()
Client

socket()
listen()

accept()

recv()

send()

connect()

send()

recv()

Block until
connect

Process
request

Connection Establishment.

Data (request)

Data (reply)

CS 640

Connectionless example (UDP)
Server

socket()

bind()
Client

socket()
recvfrom()

sendto()

bind()

sendto()

recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

CS 640

Ports (multiplexing)

• How does the OS know whether one wants to
connect to the web server or the email server?

• How does the OS know which process to
deliver the data to?

• 16 bit port numbers are used
– Both source and destination have a port number
– Servers have well known port numbers <1024

• How can the OS tell TCP packets from UDP?
– Protocol number is part of IP header

3

CS 640

Socket call

• Means by which an application attached to the network
• int socket(int family, int type, int protocol)
• family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• type: semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

CS 640

Bind call
• Binds a new socket to the specified address
• int bind(int socket, struct sockaddr *address, int

addr_len)
• socket: newly created socket handle
• address: data structure with local address

– IP address and port number (demux keys)
• Can use well known port or unique port

CS 640

Listen call

• Connection-oriented servers use it to indicate
they are willing to receive connections

• Int listen(int socket, int backlog)
• socket: handle of newly creates socket
• backlog: number of connection requests that

can be queued by the system while waiting for
server to execute accept call.

4

CS 640

Accept call
• After listen, the accept call performs a passive

open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int

addr_len)
• It blocks until a remote client carries out a

connection request
• When it does return, it returns with a new

socket that corresponds with new connection
and the address contains the clients address

CS 640

Connect call

• Client executes an active open of a connection
• Int connect(int socket, struct sockaddr *address, int

addr_len)
• Call does not return until the three-way TCP

handshake is complete
• Address field has remote system’s address
• Client OS usually selects random, unused port

CS 640

send(to), recv(from)

• After connection has been made, application
uses send/recv to data

• int send(int socket, char *message, int msg_len, int
flags)
– Send specified message using specified socket

• int recv(int scoket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified

buffer

5

CS 640

IP addresses

• IP address: 4byte-string that identifies a node
– Usually unique (some exceptions)
– Dotted decimal notation: 128.92.54.32
– Structure: network part + host part (e.g. 3 bytes + 1 byte)

• IP prefix has IP addresses with same network part
– Represented as network part / number of bits in net. part

• Examples: 120.0.0.0/8 , 128.96.0.0/14

– Hierarchical networks typically use prefix hierarchies
• Example: university network (128.105.0.0/16) includes

departmental network (128.105.167.0/24)

CS 640

Domain Name System (DNS)

• A distributed database mapping human
readable host names to IP addresses
– Other mappings too: from IP addresses to host

names, from domain names to mail servers, etc.
• DNS names have hierarchical structure:

– www.cs.wisc.edu is host name
– cs.wisc.edu is domain name for department
– wisc.edu is domain name for university
– edu is domain of U.S. educational institutions

CS 640

Software developers spend their time on

• Naïve view
– 80% write code
– 20% other things

• Reality is more like
– 20% understand problem
– 20% write code
– 20% test and debug
– 20% rewrite code
– 10% document stuff
– 10% other things

6

CS 640

Last year’s project

• Project description
– http://www.cs.wisc.edu/~estan/publications/netpy.pdf or
– http://www.cs.wisc.edu/~estan/publications/netpy.ps

• Running netpy
– Go to /p/course/cs640-estan/public/netpydemo and follow

the instructions from README.txt

• Downloading the code
– http://wail.cs.wisc.edu/netpy/
– Read netpy/doc/netpy_structure.txt first

CS 640

Project stages (milestones)
• M1: warm up

– Bugfixes and minor features
– Designing interfaces

• M2: planning
– Integration
– Redesigning interfaces
– Writing dummy modules

• M3: coding
– Implementing major new

functionality
• M4: clean up

– Integration
– Bugfixes and minor features

• Organization
– Teams of at least 4 students
– Teams work on different parts
– Reshuffling after m1 possible

• All stages include
– Testing
– Writing documentation

• Next week we will discuss
what the project teams will
have to do

