CS 640 Introduction to Computer
Networks

Lecture 4

CS 640

Today’s lecture

« Error detection
« Reliability through retransmission

CS 640

Error detection

« Typical errors important to protect against

— Random bits flipped

— Bursts of corrupted bits
» Aim of error detection schemes

— Catch most common errors

— No solution can catch all errors

— Strengths depends on algorithm and size increase
» Example: parity bit

CS 640

Two dimensional parity

Parity
i i bits
 Stronger than parity bit
s L2 it :
— Catches 1,2,3 bit errors
— Catches most 4 bit errors [1101001 o]
« Easy to compue
Data
0001110
,
ponY [amonm]
byte 1111011 [0]

CS 640

Internet checksum

Sum of 16 bit words in message

» When result exceeds 216 drop 17 bit, add 1

» Uses 1’s complement arithmetic

« Easy to compute in software (even in the ’70s)
» Weaker error detection than CRC

CS 640

Cyclic redundancy check

11111001
Generator — 1101)10011010000 «— Message
1101

1001

. . 1101
 Message is a polynomial 754
- Coefficients modulo 2 1101
1011
— Valuescanbe Oor1 1101
— +,- same as XOR 1100
. . 110
e Checksum is remainder of o
division msg. / generator 1101

101 -«— Remaindel

CS 640

CRC - contd.

« Size of remainder depends on size of generator
Error detection properties depend on generator
Standards specify generator

Easy to implement in hardware and software

Message

% x0 X! XORgate X2

CS 640

Today’s lecture

e Error detection
« Reliability through retransmission

CS 640

Reliable transmission

 Frames/packets can be lost, corrupted

« Retransmit to ensure reliability (error correction)
— Most common at transport layer (layer 4)
— Done in some data link layers too (layer 2)

» How does sender know when to retransmit?
— Use acknowledgements and timeouts

CS 640

Acknowledgements & Timeouts

» An acknowledgement (ACK) is a packet sent by one
host in response to a packet it has received

— Making a packet an ACK is simply a matter of changing a
field in the transport header

— Data can be piggybacked in ACKs
« Atimeout is a signal that an ACK to a packet that was
sent has not yet been received within a specified time

— A timeout triggers a retransmission of the original packet
from the sender

— How are timers set?

CS 640

Acknowledgements & Timeouts

Sender Receiver Sender Receiver

Framg [
H 2

CS 640

Finding the right length for timeout

Propagation delay: delay between transmission
and receipt of packets between hosts

Propagation delay can be used to estimate
timeout period
How can propagation delay be measured?

What else must be considered in the
measurement?
— Harder for transport layer than for data link layer

CS 640

Stop-and-Wait Process

Sender Receiver

« Sender won’t send next packet until sure receiver has last one
« The packet/Ack sequence enables reliability and flow control
« Sequence numbers help avoid problem of duplicate packets
« Problem: keeping the pipe full
* Example

~ 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

— 1KB frames implies 1/8th link utilization

CS 640

Solution: Pipeline via Sliding Window

« Allow multiple outstanding (un-ACKed) frames

 Upper bound on un-ACKed frames, called window
(flow control) sender

Receiver

Time

CS 640

Buffering on Sender and Receiver

e Sender buffers data so that if data lost, it can resend

» Receiver buffers data so that if data is received out of
order, it can be held until all packets are received
» How can we prevent the sender overflowing
receiver’s buffer (flow control)?
— Receiver tells sender its buffer size during connection setup
* How can we ensure reliability?
— Go-Back-N
« Send all N un-ACKed packets when a loss is signaled (inefficient)
— Selective retransmit
« Only send un-ACKed packets (a bit trickier to implement)

CS 640

Sliding Window: Sender

Assign sequence number to each frame (SegNum)
Maintain three state variables:
- send window size (SWS)
— last acknowledgment received (LAR)
— last frame sent (LFS)
Maintain invariant: LFS - LAR <= SWS
I I
t 1
LAR LFS
Advance LAR when ACK arrives
Buffer up to Sws frames

CS 640

Sliding Window: Receiver

» Maintain three state variables
— receive window size (RWS)
— largest frame acceptable (LFA)
— last frame received (LFR)
» Maintain invariant: LFA - LFR <= RWS
<RWS
R 2 O -
L::R L’FA
¢ Frame SegNum arrives:
— if LFR < SegNum < = LFA then accept
— if SeqNum < = LFR or SeqNum > LFA then discard
* Send cumulative ACKS — send ACK for largest frame such
that all frames less than this have been received
CS 640

Sequence Number Space

= SegNunm field is finite; sequence numbers wrap around
» Sequence number space must be larger than number of
outstanding frames
* SWS <= MaxSeqNum-1 is not sufficient
— suppose 3-hit SegNum field (0..7)
— SWS=RWS=7
— sender transmit frames 0..6 which arrive, but ACKs lost
— sender retransmits 0..6
— receiver expecting 7, 0..5, but receives the original 0..5
 SWS < (MaxSeqNum+1)/2 is correct rule
« Intuitively, SegNum “slides” between two halves of
sequence number space oo

Stop & wait sequence numbers

Receiver Sender Receiver

« Simple sequence numbers enable the‘client to
discard duplicate copies of the same frame

 Stop & wait allows one outstanding frame,
requires two distinct sequence numbers

CS 640

Another Pipelining Possibility:
Concurrent Logical Channels

« Multiplex 8 logical channels over a single link
* Run stop-and-wait on each logical channel
« Maintain three state bits per channel

— channel busy

— current sequence number out

— next sequence number in

Header: 3-bit channel num, 1-bit sequence num
— 4-bits total, same as sliding window protocol
Separates reliability from order

CS 640

Sliding Window Summary

* Sliding window is best known algorithm in
networking

* First role is to enable reliable delivery of packets
— Timeouts and acknowledgements

 Second role is to enable in order delivery of packets

— Receiver doesn’t pass data up to next layer until it has
packets in order

Third role is to enable flow control
— Prevents server from overflowing receiver’s buffer

CS 640

Sliding Window Example

Sender Receiver
[o1T2[3 4 s 6|7 [8]o[10[11]1z[13]1a] o123 4 s 6] 7 89[10[11]12[13]1a]
1

L

e E—. \}n\‘
lofa]2 3 45 6[7]8]o][10[11]12]13]14] ~
\

[o[1T2[3 4[5 6780 [10[11]12[13]14]

T

—
A3 J0[1]2[3]4[5[6[7]8]9[10[11]12[13]14

 E—

[oT1l2]3Ta]s5] 67 [8]o]r0[11]12[13]14]
1

Vi

[oT1T2Ts
[oTz[2[3[a[s]e7][s]o10[11]12]13]14] \ [aTs [s [7Ts [o [so]ulie]ssse]
S E—

7
ae Jof1]2[3T4]s[e]|7[8]9][10]u]rz]13]14]
 E—

e e—
[o[1]2]3]4]s]6]|7]e]e10[11]12]13[14]
S |

