CS 640 Introduction to Computer Networks

Lecture 8

CS 640

Today's lecture

• IP

- Addressing and forwarding
- ARP
- DHCP

CS 640

The Internet Protocol

- IP implements best effort end to end datagram delivery service
- All computers in the Internet use IP (version 4)
- · Store and forward handling of packets
- Forwarding: routers decide which way to send a packet based on its destination IP address
 - Uses local database of networks called forwarding table
 - Forwarding tables configured statically or built dynamically by routing protocols

- Suppose there are *n* possible destinations, how many bits are needed to represent addresses in a forwarding table?
 - $-\log_2 n$
- So, we need to store and search *n* * log₂*n* bits in forwarding tables?
 - We're smarter than that!

Addressing

- IP Address: 4byte-string that identifies a node
 - usually unique (some exceptions)
 - dotted decimal notation: 128.92.54.32
- · Types of addresses
 - unicast: node-specific
 - broadcast: all nodes on the network
 - multicast: some subset of nodes on the network

Datagram Forwarding

- Strategy
 - every datagram contains destination's address
 - if directly connected to dest. network, forward to host
 if not directly connected to destination network, then
 - forward to some router – forwarding table maps network number to next hop
 - each router has forwarding table
 - each host has a default router

Example	Network	Next Hop
for router R2	1	R3
in previous figure	2	R1
	3	interface 0
	4	interface 1
	default	R3
	CS 640	

Subnetting and Supernetting

- Fixed network sizes are wasteful
 - What happens if a site asks for 300 IP addresses?
 - Subnetting
- Too many entries at a router can be combined
 - Keep routing tables small
 - Supernetting
- Classless Inter-Domain Routing (CIDR)

Subnetted address

CS 640

D = destination IP address

- for each entry(SubnetNum,SubnetMask,NextHop)
 - D1 = SubnetMask & D if D1 = SubnetNum
 - I D1 = SubnetNum
 - if NextHop is an interface deliver datagram directly to D
 - else
 - deliver datagram to NextHop
- Use a default router if nothing matches
- · Can put multiple subnets on one physical network
- · Subnets not visible from the rest of the Internet

Supernetting

- · Assign block of contiguous network numbers to nearby networks
- · Restrict block sizes to powers of 2
- · Use a bit mask to identify block size
- CIDR: Classless Inter-Domain Routing
 - Routers work with prefixes (subnets and supernets)
- · All routers must understand CIDR addressing

CS 640

Forwarding Table Lookup

- What if more than one prefix matches?
- Longest prefix match
 - Each entry in the forwarding table is:
 - < Network Number / Num. Bits> | interface-id Suppose we have:

192.20.0.0/16

| i0

192.20.12.0/24 | i1

And destination address is: 192.20.12.7, choose i1

CS 640

Today's lecture

• IP

- Addressing and forwarding
- ARP
- DHCP

Address Translation

- · Map IP addresses into physical addresses
 - destination host
 - next hop router
- Techniques
 - encode MAC address in host part of IP address
 - table-based
- ARP
 - table of IP to MAC address bindings
 - broadcast request if IP address not in table
 - target machine responds with its MAC address
 - table entries are discarded if not refreshed

CS 640

ARP Details

- · Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target-Physical/Protocol addresses
- Notes
 - table entries timeout in about 10 minutes
 - update table with source when you are the target
 - update table if already have an entry
 - do not refresh table entries upon reference

Reverse Address Resolution Protocol

- RARP is part of the TCP/IP specification
- RARP operates much like ARP
 - A requestor broadcasts is RARP request
 - Servers respond by sending response directly to requestor
 - Requestor keeps IP delivered by first responder
 - Requestor keeps sending requests until it gets an IP
- · Need redundant RARP servers for reliability
 - Timeouts can be used to activate backup RARP servers
 Backup servers reply to a RARP request if they don't hear the RARP response from the primary server after some time CS 640

Today's lecture

• IP

- Addressing and forwarding
- ARP
- DHCP

CS 640

Alternatives to RARP

- · RARP has shortcomings
 - Most are subtle, all deal with fact that RARP operates at data link level
- BOOTstrap Protocol (BOOTP) was developed as an alternative to RARP – moves process to network level
 - Uses UDP/IP packets to carry messages
 - · Hosts are still identified by MAC address
 - How can UDP running over IP be used by a computer to discover its IP address?
 - Use special case IP address 255.255.255.255 limited broadcast not forwarded by routers

Dynamic Configuration

- BOOTP was designed for a static environment where each host has a permanent network addr.
 - Manager creates a BOOTP config file with parameters for each host – file stable for long time
- Wireless networking enables much more dynamic environments
 - BOOTP does not provide for dynamic address assignment
- Dynamic configuration is the primary method for IP address allocation used today
 - Not only facilitates mobility but also efficient use of IPs

CS 640

Dynamic Host Configuration Protocol

- DHCP extends BOOTP
 - Still supports static allocation
 - Supports automatic configuration where addresses are permanent but assigned by DHCP
 - Supports temporary allocation
- Relies on existence of a DHCP server
 - Repository for host configuration information
 - Maintains a pool of available IP's for use on demand
 - Considerably reduces administration overhead
 - Uses UDP to send messages

CS 640

DHCP Implementation

- State machine (6 states) determines DHCP operation
 Host boots into *INITIALIZE* state
- To contact the DHCP server(s) a client sends DHCPDISCOVER message to IP broadcast address and moves to SELECT state
 - Unique header format with variable length options field
 - UDP packet sent to well known BOOTP port 67
- Server(s) respond with DHCPOFFER message
 - Client can receive 0 or more responses and responds to one

DHCP Implementation contd.

- Client moves to *REQUEST* state to negotiate IP lease with 1 server
 - Sends DHCPREQUEST message to server which responds with DHCPACK
- Client is then in BOUND (normal) state
- From *BOUND*, client can issue DHCPRELEASE and return to *INITIALIZE* state
 - This is simply client deciding it no longer needs the IP

CS 640

DHCP implementation contd.

- When lease reaches 50% of lease expiration time, it issues DHCPREQUEST to extend lease of current IP with server and moves to *RENEW* state
 - Receipt of DHCPACK moves client back to *BOUND* state
 Receipt of DHCPNACK moves client back to *INITIALIZE* state
- If no response is received by 87.5% of lease expiration time, the client resends the DHCPREQUEST and moves to *REBIND* state
 - Receipt of DHCPACK moves client back to BOUND state
 Receipt of DHCPNACK or timeout moves client back to INITIALIZE state