CS 640 Introduction to Computer Networks

Lecture 9

CS 640

Today's lecture

- IP fragmentation
- Source routing
- Connection oriented networks - ATM

- Layer 2 protocols have different maximum packet sizes (MTU)
 - What should a router do when packet too large?

Source routing

- Source puts in each packet all routers on the path to destination
 - Much control for source
 - Source needs to know topology
 - Forwarding is simple
- · Loose source routing
 - Only specify some routers the packet has to go through
- · Part of IP protocol
 - Implemented with options
 - Usually turned off at routers easily misused

Sharing in d	ata networks
--------------	--------------

Network	Internet	Phone network	
Network service	IP datagrams	Calls TDM	
Multiplexing ex.	Statistical multiplexing		
Good for voice	Yes	Yes	
Good for data	Yes	No	
Forwarding	Complex	Simple	

Forwarding architectures

- Datagram
 - Based on globally unique destination address
 Longest prefix match
- Source routing
 - Source specifies full path in each packet
- · Virtual circuits
 - Based on locally unique (link local) virtual circuit identifier
 - Exact match

Virtual circuit forwarding

- Very simple (in hardware)
- Virtual circuit identifier smaller than globally unique endhost addresses
- If any switch on the path fails, circuit is gone
- Can "reboot" control plane only
 Easier to provide *quality of service* (QoS)

CS 640

Forwarding table for switch 1							
Incoming		Outgoing					
Interface	VCI	Interface	VCI				
2	5	1	19				

ATM (Asynchronous Transfer Mode)

- Technology used since late 80s for telephony - Used for data (layer 2 for IP backbones)
- Uses small fixed size "cells" 48 bytes of payload
- Identifier divided into two:
 - Virtual path identifier (a path bundles many circuits)
 - Virtual circuit identifier
 - Some switches only look at VPI
- Segmentation and reassembly done at ends of VCI
- ATM switches were faster and cheaper than IP routers