CS 640 Introduction to Computer Networks

Lecture 11

CS 640

Routing – the big picture

- Internet divided into Autonomous Systems (ASes)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (RIP, OSPF)
 - exterior gateway protocol (Internet-wide standard)

CS 640

Overview

- · Forwarding vs Routing
 - forwarding: to select an output port based on destination address and routing table
 - routing: process by which routing table is built
- · Network as a Graph

• Problem: Find best path between two nodes

- Factors
 - static: topologydynamic: load

CS 640

Families of routing algorithms

- · Distance vector
 - Tell your neighbors about everybody you know of
 - Lower memory
 - RIP: Route Information Protocol
 - · based on hop-count
- · Link state
 - Tell everybody about your neighbors
 - Most used today
 - OSPF: Open Shortest Path First

CS 640

Distance Vector

- Each node maintains a set of triples
 - (Destination, Cost, NextHop)
- Neighbors exchange updates
 - periodically (on the order of several seconds)
 - whenever table changes (called *triggered* update)
- Each update is a list of pairs: (Dest, Cost)
- Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- Refresh existing routes; delete if they time out $_{\text{CS 640}}$

Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon
 - Don't advertise route to neighbor you heard it from
- Split horizon with poison reverse
 - Advertise it with ∞ cost

CS 640

Link State

- Strategy
 - send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each immediate neighbor
 - sequence number (SEONO)
 - time-to-live (TTL) for this packet

CS 640

Link State (cont)

- Reliable flooding
 - store most recent LSP from each node
 - forward **new** LSPs to all neighbors (except the one that sent it)
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

Route Calculation

- Dijkstra's shortest path algorithm
 - s denotes node performing calculation
 l (i, j) denotes non-negative cost (weight) for edge (i, j)

 - C(n) denotes cost of the path from s to node n
 - N denotes set of all nodes in the graph
 M denotes the set of nodes incorporated so far

 $M = \{s\}$ for each n in $N - \{s\}$

for each n in N - {s} C(n) = 1(s, n)while (N := M) $M = M + \{w\} \text{ such that } C(w) \text{ is the min for all } w \text{ in } N - M$ for each n in (N - M) $C(n) = \min(C(n), C(w) + 1(w, n))$

- Invariant of Dijkstra's algorithm
 - We have shortest path for nodes from M to s
- For nodes outside M we have shortest path that goes to s only using nodes in M as next hop

CS 640

•	
•	
-	
-	

-	
	-

