CS 640 Introduction to Computer Networks

Lecture13

CS 640

Today's lecture

- · Virtual networks
 - VLANs (layer 2)
 - VPNs (layer 3)
- Mobile IP

CS 640

Why restrict reachability?

- Security multiple defenses
 - Sometimes you don't want some computers to communicate with the outside world
- Performance
 - Protect the performance of virtual networks from the effects of the rest of the traffic
 - VLANs cut down on broadcast traffic
- But sharing infrastructure reduces costs!!!

-	
-	
•	

VLANs • Bridges never forward frames from one VLAN to the other • Each port is assigned to one VLAN • Some ports assigned to many VLANs - Must add VLAN ID to frames CS 840

MPLS (MultiProtocol Label Switching)

PPP header	Label header	Layer 3 header

- Circuit switching technology developed to work with IP
 - Can use IP control plane (routing)
 - Can control paths explicitly
 - Convert ATM switches with software update
- Uses 32 bit "shim header" between layer 2 and 3 headers
 - 20 bit link-local labels

CS 640

MPLS (contd.)

- Label Switching Routers (LSRs) inside the network forward packets based on exact lookups of MPLS labels
- Label Edge Routers (LERs) still need to perform longest matching prefix lookup to determine first label
- · MPLS used for
 - VPNs
 - Traffic engineering

CS 640

Today's lecture

- · Virtual networks
 - VLANs (layer 2)
 - VPNs (layer 3)
- Mobile IP

Portable Networking Technology

- · Cellular systems
 - Cellular Digital Packet Data (CDPD)
- · Bluetooth
 - Cheap, short range radio links for mobile devices
- Wireless Ethernet (802.11)
 - Widely used wireless MAC layer technology

CS 640

Mobility and IP Routing

- IP assumes end hosts in fixed physical locations
 - What happens if we move a host between networks?
- IP addresses allow IP routing algorithms to get packets to the correct network
 - Each IP address has network part and host part
 - · This keeps host specific information out of routers
 - DHCP is used to give IP addresses to hosts
 - · This still assumes a fixed end host
- What if a user wants to roam between networks?
 - Users don't want to notice moving between networks
 - Why can't mobile users change IP when running an application?

Mobile IP

- · Mobile IP was developed for transparently dealing with problems of mobile users
 - Hosts can connect to Internet regardless of location
 - Hosts can accept connections w/o changing IP addr.
 - Requires no changes for non-mobile hosts/routers
 - Requires addition of some infrastructure
 - Has no geographical limitations
 - Requires no modifications to IP address format
 - Supports security
 - Could be even more important than physically connected routing
- IETF standardization process is still underway

-	

Mobile IP Entities

- Mobile Node (MN)
 - The entity that may change its point of attachment from network to network in the Internet
 - · Detects it has moved and registers with "best" FA
 - Assigned a permanent IP called its home address to which other hosts send packets regardless of MN's location
 - Can be used by long-lived applications as MN's location changes
- Home Agent (HA)
 - This is router with additional functionality
 - Located on home network of MN
 - Does mobility binding of MN's IP with its COA
 - Forwards packets to appropriate network when MN is away

CS 640

Mobile IP Entities contd.

- Foreign Agent (FA)
 - Another router with enhanced functionality
 - If MN is away it uses an FA to send/receive data to/from HA
 - Advertises itself periodically
 - Forward's MN's registration request
- Care-of-address (COA)
 - Address which identifies MN's current location
 - Sent by FA to HA when MN attaches
 - Usually the IP address of the FA
- · Correspondent Node (CN)
 - End host to which MN is corresponding (eg. a web server)

CS 640

Mobile IP Support Services

- · Agent Discovery
 - HAs and FAs broadcast their presence on their networks
 - Beacon messages via ICMP Router Discovery Protocol (IRDP)
 - MN's listen for advertisement and then initiate registration
- · Registration
 - When MN is away, it registers its COA with its HA
 - Typically through the FA with strongest signal
 - Registration control messages are sent to well known UDP port
- · Tunneling between HA and FA

Mobile IP Operation

- · MN listens for agent advertisement and initiates registration
 - If responding agent is the HA, mobile IP is not necessary
- After receiving the registration request from a MN, the HA acknowledges and registration is complete
 - Registration happens as often as MN changes networks
- HA intercepts all packets destined for MN
 - Simple unless sender is on same network as HA
 - HA masquerades as MN
 - After some time, MN must re-register

CS 640

Registration Process Foreign Network Visitor list MOBILE NODE HOME AGENT Mobility Binding Table

Tables maintained on routers

- · Mobility Binding Table
 - Maintained on HA of MN

_	Maps MN's home address
	with its current COA

- · Visitor List
 - Maintained on FA
 - Maps MN's home address to its MAC address and HA

Home Address	Care-of Address	Lifetime (in sec)
131.193.171.4	128172.23.78	200
131.193.171.2	119.123.56.78	150

Home Address	Home Agent Address	Media Address	Lifetime (in s)
131.193.44.14	131.193.44.7	00-60-08-95-66-E1	150
131.193.33.19	131.193.33.1	00-60-08-68-A2-56	200

Mobile IP Operation contd.

- HA encapsulates all packets addressed to MN and forwards them to FA
 - IP tunneling
- FA decapsulates all packets addressed to MN and forwards them via hardware address (learned as part of registration process)
 - MN can perform FA functions if it acquires an IP address eg. via DHCP
- Bidirectional communications require tunneling in each direction

CS 640

Security in Mobile IP

- Authentication can be performed by all parties
 - Only authentication between MN and HA required
- · Replay protection
 - Timestamps are mandatory
 - Random numbers on request reply packets are optional
- HA and FA do not have to share any security information.

Problems with Mobile IP

- Suboptimal "triangle" routing
 - What if MN is in same subnet as the CN and HA is on the other side of the world?
 - Would be nice if we could directly route packets
 - Solution: Let the CN know the COA of MN
 - · CN can create its own tunnel to MN
 - CN must have software to enable it to learn the COA
 - Initiated by HA who notifies CN via "binding update"
 - · Binding table can become stale
- Alternatives handle mobility at session layer

CS 64

Other Mobile IP Problems

- Single HA model is fragile
 - Possible solution have multiple HA
- Security
 - Connection hijacking, snooping...
- What if MN moves out of reach
 - Applications must handle disconnection
- Many open research questions