
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture15

CS 640

Today’s lecture

• Transport layer – TCP

CS 640

Congestion in the Internet

• Checksums are effective for detecting bit errors but
they are not the only problem…

• We know that traffic is bursty
– Statistical multiplexing of ON/OFF sources
– Heavy-tailed file sizes
– Routers have limited buffer capacity
– Packets dropped when buffers full

• Buffers do protect from short bursts

• Congestion lengthens delays and lowers throughput
– Standard throughput/load curve

Optimal
load Load

Th
ro

ug
hp

ut
/d

el
ay

2

CS 640

How can we deal with congestion?
• Over-provision networks

– Very expensive
– Commonly done

• Networks designed to normally operate at 5-50% capacity

• Call admission control (phone networks)
• Develop protocols to respond to congestion

– Route away from congestion
• Good idea – how can we do it?

– Retransmit in the face of loss
• This is the state of the art

CS 640

Congestion Control Basics
• UDP will send packets at any specified rate

– Does not have mechanisms to handle congestion
• Issues:

– Detecting congestion
– Reacting to congestion
– Avoiding congestion

• Shaping traffic
• QoS mechanisms

• Transport protocol will deal with congestion…

CS 640

Congestion control in the Internet

• TCP implements congestion control
– Detects congestion through packet losses
– Reduces rate aggressively in response to congestion
– Increases rate cautiously to use up available bandwidth
– Works well for large flows

• Why the Internet doesn’t experience congestion
collapse
– Backbones overprovisioned
– TCP congestion control
– Sources’ rate limited by nearest bottleneck link

3

CS 640

Next two lectures

• TCP
– Introduction
– Header format
– Connection establishment and termination
– Reliability
– Roundtrip estimation
– Congestion control (not today)

CS 640

TCP Overview

• TCP is the most widely used Internet protocol
– Web, Peer-to-peer, FTP, telnet, …
– A focus of intense study for many years

• A two way, reliable, byte stream oriented end-to-
end protocol

• Closely tied to the Internet Protocol (IP)
• Our goal is to understand the RENO version of

TCP (most widely used TCP today)
– mainly specifies mechanisms for dealing with

congestion

CS 640

TCP Features
• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Reliable data transfer
Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

4

CS 640

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

CS 640

Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– Ack., SequenceNum, AdvertisedWindow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum is the same as UDP
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

CS 640

Sequence Numbers
• 32 bit sequence numbers

– Wrap around supported
• TCP breaks byte stream from application into

packets (limited by Max. Segment Size)
• Each byte in the data stream is considered
• Each packet has a sequence number

– Initial number selected at connection time
– Subsequent numbers give first data byte in packet

• ACKs indicate next byte expected

5

CS 640

Sequence Number Wrap Around

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Protect against this by adding a 32-bit timestamp to TCP header

CS 640

Connection Establishment

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

CS 640

Connection Termination
Active participant

(server)
Passive participant

(client)
FIN, SequenceNum = x

Acknowledgment = y + 1

Acknowledgment = x + 1

FIN, SequenceNum= y

6

CS 640

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

CS 640

Reliability in TCP
• Checksum used to detect bit level errors
• Sequence numbers help detect sequencing errors

– Duplicates are ignored
– Out of order packets are reordered (or dropped)
– Lost packets are retransmitted

• Timeouts used to detect lost packets
– Requires RTO calculation
– Requires sender to maintain data until it is ACKed

CS 640

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected <
= LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

7

CS 640

Flow Control in TCP
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -1

- LastByteRead)
• Sending side

– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

• Always send ACK in response to arriving data segment
• Persist sending one byte seg. when AdvertisedWindow = 0

CS 640

Keeping the Pipe Full
• 16-bit AdvertisedWindow controls amount of pipelining
• Assume RTT of 100ms
• Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
OC-3 (155 Mbps) 1.8MB
OC-12 (622 Mbps) 7.4MB
OC-24 (1.2 Gbps) 14.8MB

CS 640

Making TCP More Efficient
• Delayed acknowledgements

– Try to piggyback ACKs with data
– Try not to send small packets, sender sends only

when it has enough data to fill MSS
• See Nagle’s algorithm

• Acknowledge every other packet
– Many instances in transmission sequence which

require an ACK

8

CS 640

Karn/Partridge Algorithm for RTO

• Degenerate cases with for RTT measurements
– Solution: Do not sample RTT when retransmitting

• After each retransmission, set next RTO to be double
the value of the last
– Exponential backoff is well known control theory method
– Loss is most likely caused by congestion so be careful

Sender Receiver

Original transmission

ACKS
am

pl
eR

TT Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

TT

Retransmission

CS 640

Jacobson/ Karels Algorithm
• In late ’80s, Internet was suffering from congestion collapse
• New Calculations for average RTT – Jacobson ’88
• Variance is not considered when setting timeout value

– If variance is small, we could set RTO = EstRTT
– If variance is large, we may need to set RTO > 2 x EstRTT

• New algorithm calculates both variance and mean for RTT
• Diff = sampleRTT - EstRTT
• EstRTT = EstRTT + δ x Diff
• Dev = Dev + δ (|Diff| - Dev)

– Initially settings for EstRTT and Dev given
– δ is a factor between 0 and 1 (typical value is 0.125)

CS 640

Jacobson/ Karels contd.
• TimeOut = µ x EstRTT + φ x Dev

– where µ = 1 and φ = 4
• When variance is small, TimeOut is close to EstRTT
• When variance is large Dev dominates the calculation
• Another benefit of this mechanism is that it is very efficient

to implement in code (does not require floating point)
• Notes

– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

• These issues have been studied and dealt with in new RFC’s
for RTO calculation.

• TCP RENO uses Jacobson/Karels

