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Today’s lecture

* Transport layer — TCP
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Congestion in the Internet

» Checksums are effective for detecting bit errors but

they are not the only problem...
* We know that traffic is bursty
— Statistical multiplexing of ON/OFF sources
— Heavy-tailed file sizes
— Routers have limited buffer capacity

— Packets dropped when buffers full
« Buffers do protect from short bursts

Throughput/dela

Optimal
Igad

« Congestion lengthens delays and lowers throughput

— Standard throughput/load curve
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How can we deal with congestion?

Over-provision networks
— Very expensive
— Commonly done

« Networks designed to normally operate at 5-50% capacity
Call admission control (phone networks)
Develop protocols to respond to congestion
— Route away from congestion

« Good idea — how can we do it?

— Retransmit in the face of loss
« This is the state of the art
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Congestion Control Basics

« UDP will send packets at any specified rate
— Does not have mechanisms to handle congestion
e Issues:
— Detecting congestion
— Reacting to congestion
- Avoiding congestion
« Shaping traffic
* QoS mechanisms

« Transport protocol will deal with congestion...
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Congestion control in the Internet

» TCP implements congestion control
— Detects congestion through packet losses
— Reduces rate aggressively in response to congestion

— Increases rate cautiously to use up available bandwidth
— Works well for large flows

« Why the Internet doesn’t experience congestion
collapse

— Backbones overprovisioned
— TCP congestion control

— Sources’ rate limited by nearest bottleneck link
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Next two lectures

« TCP
— Introduction
— Header format
— Connection establishment and termination
- Reliability
— Roundtrip estimation
— Congestion control (not today)
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TCP Overview

TCP is the most widely used Internet protocol

— Web, Peer-to-peer, FTP, telnet, ...

— A focus of intense study for many years

A two way, reliable, byte stream oriented end-to-
end protocol

Closely tied to the Internet Protocol (IP)

Our goal is to understand the RENO version of
TCP (most widely used TCP today)

— mainly specifies mechanisms for dealing with
congestion
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TCP Features

Connection-oriented ¢ Full duplex

Byte-stream » Flow control: keep sender
— app writes bytes from overrunning receiver
- TCPsends segments  « Congestion control: keep
— app reads bytes sender from overrunning
Reliable data transfer network
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Segment Format

0 4 10 16 31

SrcPort ‘ DstPort

SequenceNum

Acknowledgment

HdrLen

0 . Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

e e
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Segment Format (cont)

« Each connection identified with 4-tuple:

— (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

« Sliding window + flow control
— Ack., SequenceNum, AdvertisedWindow

Data(SequenceNum)

Acknowledgment +
AdvertisedWindow

* Flags
— SYN, FIN, RESET, PUSH, URG, ACK
» Checksum is the same as UDP

— pseudo header + TCP header + data
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Sequence Numbers

32 bit sequence numbers
— Wrap around supported

TCP breaks byte stream from application into
packets (limited by Max. Segment Size)

Each byte in the data stream is considered

Each packet has a sequence number

— Initial number selected at connection time

— Subsequent numbers give first data byte in packet
ACKs indicate next byte expected
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Sequence Number Wrap Around

Bandwidth

Time Until Wrap Around

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)
FDDI (100 Mbps)
STS-3 (155 Mbps)
STS-12 (622 Mbps)
STS-24 (1.2 Ghps)

6.4 hours
57 minutes
13 minutes
6 minutes
4 minutes
55 seconds
28 seconds

« Protect against this by adding a 32-bit timestamp to TCP header
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Connection Establishment

Active participant
(client)

Passive participant
(server)
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Connection Termination

Active participant
(server)

Passive participant
(client)
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State Transition Diagram
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Reliability in TCP

» Checksum used to detect bit level errors

 Sequence numbers help detect sequencing errors
— Duplicates are ignored

— Out of order packets are reordered (or dropped)
— Lost packets are retransmitted

« Timeouts used to detect lost packets
— Requires RTO calculation
— Requires sender to maintain data until it is ACKed
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Sliding Window Revisited
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« Sending side
— LastByteAcked <=

¢ Receiving side
— LastByteRead <

LastByteSent NextByteExpected
— LastByteSent <= — NextByteExpected <
LastByteWritten = LastByteRcvd +1
- buffer bytes between — buffer bytes between
LastByteAcked and NextByteRead and
LastByteWritten

s 640 LastByteRcvd




Flow Control in TCP

« Send buffer size: MaxSendBuffer
« Receive buffer size: MaxRcvBuf fer
« Receiving side
— LastByteRcvd - LastByteRead < = MaxRcvBuffer
— AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -1
- LastByteRead)
« Sending side
— LastByteWritten - LastByteAcked < = MaxSendBuffer
— block sender if (LastByteWritten - LastByteAcked) +y >
MaxSenderBuffer
— LastByteSent - LastByteAcked < = AdvertisedWindow
— EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)
Always send ACK in response to arriving data segment
Persist sending one byte seg. when AdvertisedWindow= 0
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Keeping the Pipe Full

* 16-bit AdvertisedWindow controls amount of pipelining
e Assume RTT of 100ms
« Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

0C-3 (155 Mbps) 1.8MB

0C-12 (622 Mbps) 7.4MB

0OC-24 (1.2 Ghps) 14.8MB
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Making TCP More Efficient

« Delayed acknowledgements
— Try to piggyback ACKs with data
— Try not to send small packets, sender sends only
when it has enough data to fill MSS
« See Nagle’s algorithm
» Acknowledge every other packet

— Many instances in transmission sequence which
require an ACK
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Karn/Partridge Algorithm for RTO

Sender Receiver Sender Receiver

SampleR TT
SampleR TT

« Degenerate cases with for RTT measurements
— Solution: Do not sample RTT when retransmitting

« After each retransmission, set next RTO to be double
the value of the last
— Exponential backoff is well known control theory method
— Loss is most likely causegstgocongestion so be careful

Jacobson/ Karels Algorithm

« In late "80s, Internet was suffering from congestion collapse
« New Calculations for average RTT — Jacobson ’88
« Variance is not considered when setting timeout value
— If variance is small, we could set RTO = EStRTT
— If variance is large, we may need to set RTO > 2 x EStRTT
« New algorithm calculates both variance and mean for RTT
® Diff = sampleRTT - EstRTT
e EstRTT = EstRTT + & X Diff
e Dev = Dev + & ( |Diff| - Dev)
— Initially settings for EstrTT and pev given
— & is afactor between 0 and 1 (typical value is 0.125)
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Jacobson/ Karels contd.

* TimeOut = 4 X EstRTT + ¢ X Dev
— where y=1and ¢=4
* When variance is small, TimeOut is close to EStRTT
* When variance is large Dev dominates the calculation
« Another benefit of this mechanism is that it is very efficient
to implement in code (does not require floating point)
* Notes
— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later)
e These issues have been studied and dealt with in new RFC’s
for RTO calculation.
* TCP RENO uses Jacobson/Karels
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