CS 640 Introduction to Computer

Networks

Lecturel5

CS 640

Today’s lecture

* Transport layer — TCP

CS 640

Congestion in the Internet

» Checksums are effective for detecting bit errors but

they are not the only problem...
* We know that traffic is bursty
— Statistical multiplexing of ON/OFF sources
— Heavy-tailed file sizes
— Routers have limited buffer capacity

— Packets dropped when buffers full
« Buffers do protect from short bursts

Throughput/dela

Optimal
Igad

« Congestion lengthens delays and lowers throughput

— Standard throughput/load curve

CS 640

Loa

How can we deal with congestion?

Over-provision networks
— Very expensive
— Commonly done

« Networks designed to normally operate at 5-50% capacity
Call admission control (phone networks)
Develop protocols to respond to congestion
— Route away from congestion

« Good idea — how can we do it?

— Retransmit in the face of loss
« This is the state of the art

CS 640

Congestion Control Basics

« UDP will send packets at any specified rate
— Does not have mechanisms to handle congestion
e Issues:
— Detecting congestion
— Reacting to congestion
- Avoiding congestion
« Shaping traffic
* QoS mechanisms

« Transport protocol will deal with congestion...

CS 640

Congestion control in the Internet

» TCP implements congestion control
— Detects congestion through packet losses
— Reduces rate aggressively in response to congestion

— Increases rate cautiously to use up available bandwidth
— Works well for large flows

« Why the Internet doesn’t experience congestion
collapse

— Backbones overprovisioned
— TCP congestion control

— Sources’ rate limited by nearest bottleneck link

CS 640

Next two lectures

« TCP
— Introduction
— Header format
— Connection establishment and termination
- Reliability
— Roundtrip estimation
— Congestion control (not today)

CS 640

TCP Overview

TCP is the most widely used Internet protocol

— Web, Peer-to-peer, FTP, telnet, ...

— A focus of intense study for many years

A two way, reliable, byte stream oriented end-to-
end protocol

Closely tied to the Internet Protocol (IP)

Our goal is to understand the RENO version of
TCP (most widely used TCP today)

— mainly specifies mechanisms for dealing with
congestion

CS 640

TCP Features

Connection-oriented ¢ Full duplex

Byte-stream » Flow control: keep sender
— app writes bytes from overrunning receiver
- TCPsends segments « Congestion control: keep
— app reads bytes sender from overrunning
Reliable data transfer network

=

—
T wiite 3 Read
: bytes bytes
=]
e
(Send buffer] [(Receive buffer
Segment .

Transmit segments
CS 640

Segment Format

0 4 10 16 31

SrcPort ‘ DstPort

SequenceNum

Acknowledgment

HdrLen

0 . Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

e e

CS 640

Segment Format (cont)

« Each connection identified with 4-tuple:

— (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

« Sliding window + flow control
— Ack., SequenceNum, AdvertisedWindow

Data(SequenceNum)

Acknowledgment +
AdvertisedWindow

* Flags
— SYN, FIN, RESET, PUSH, URG, ACK
» Checksum is the same as UDP

— pseudo header + TCP header + data
CS 640

Sequence Numbers

32 bit sequence numbers
— Wrap around supported

TCP breaks byte stream from application into
packets (limited by Max. Segment Size)

Each byte in the data stream is considered

Each packet has a sequence number

— Initial number selected at connection time

— Subsequent numbers give first data byte in packet
ACKs indicate next byte expected

CS 640

Sequence Number Wrap Around

Bandwidth

Time Until Wrap Around

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)
FDDI (100 Mbps)
STS-3 (155 Mbps)
STS-12 (622 Mbps)
STS-24 (1.2 Ghps)

6.4 hours
57 minutes
13 minutes
6 minutes
4 minutes
55 seconds
28 seconds

« Protect against this by adding a 32-bit timestamp to TCP header

CS 640

Connection Establishment

Active participant
(client)

Passive participant
(server)

CS 640

Connection Termination

Active participant
(server)

Passive participant
(client)

CS 640

State Transition Diagram

CLOSED

Active open'SYN
Passive opel Close

LISTEN

SYN/SYN + AC} Send/SYN

SYN_RCVD SYN/SYN + ACK

ACK

SYN_SENT
SYN + ACK/ACK

cw
CloselFIN FINJACK
FIN_WAIT_1 CLOSE_WAIT|
FINJACK
Ack g CloselFIN
X%,

‘F|N7WA\T72 ‘ %04— ‘ CLOSING ‘ ‘ LAST_ACK ‘

l Ack_ Timeout after two
FINIACK

l ACK

segment lifetimes

‘}T\MEﬁWAIT} } CLOSED ‘
CS 640

Reliability in TCP

» Checksum used to detect bit level errors

 Sequence numbers help detect sequencing errors
— Duplicates are ignored

— Out of order packets are reordered (or dropped)
— Lost packets are retransmitted

« Timeouts used to detect lost packets
— Requires RTO calculation
— Requires sender to maintain data until it is ACKed

CS 640

Sliding Window Revisited

[l (I []
i

o
L

[
i
L L

« Sending side
— LastByteAcked <=

¢ Receiving side
— LastByteRead <

LastByteSent NextByteExpected
— LastByteSent <= — NextByteExpected <
LastByteWritten = LastByteRcvd +1
- buffer bytes between — buffer bytes between
LastByteAcked and NextByteRead and
LastByteWritten

s 640 LastByteRcvd

Flow Control in TCP

« Send buffer size: MaxSendBuffer
« Receive buffer size: MaxRcvBuf fer
« Receiving side
— LastByteRcvd - LastByteRead < = MaxRcvBuffer
— AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -1
- LastByteRead)
« Sending side
— LastByteWritten - LastByteAcked < = MaxSendBuffer
— block sender if (LastByteWritten - LastByteAcked) +y >
MaxSenderBuffer
— LastByteSent - LastByteAcked < = AdvertisedWindow
— EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)
Always send ACK in response to arriving data segment
Persist sending one byte seg. when AdvertisedWindow= 0

CS 640

.

Keeping the Pipe Full

* 16-bit AdvertisedWindow controls amount of pipelining
e Assume RTT of 100ms
« Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

0C-3 (155 Mbps) 1.8MB

0C-12 (622 Mbps) 7.4MB

0OC-24 (1.2 Ghps) 14.8MB

CS 640

Making TCP More Efficient

« Delayed acknowledgements
— Try to piggyback ACKs with data
— Try not to send small packets, sender sends only
when it has enough data to fill MSS
« See Nagle’s algorithm
» Acknowledge every other packet

— Many instances in transmission sequence which
require an ACK

CS 640

Karn/Partridge Algorithm for RTO

Sender Receiver Sender Receiver

SampleR TT
SampleR TT

« Degenerate cases with for RTT measurements
— Solution: Do not sample RTT when retransmitting

« After each retransmission, set next RTO to be double
the value of the last
— Exponential backoff is well known control theory method
— Loss is most likely causegstgocongestion so be careful

Jacobson/ Karels Algorithm

« In late "80s, Internet was suffering from congestion collapse
« New Calculations for average RTT — Jacobson ’88
« Variance is not considered when setting timeout value
— If variance is small, we could set RTO = EStRTT
— If variance is large, we may need to set RTO > 2 x EStRTT
« New algorithm calculates both variance and mean for RTT
® Diff = sampleRTT - EstRTT
e EstRTT = EstRTT + & X Diff
e Dev = Dev + & (|Diff| - Dev)
— Initially settings for EstrTT and pev given
— & is afactor between 0 and 1 (typical value is 0.125)

CS 640

Jacobson/ Karels contd.

* TimeOut = 4 X EstRTT + ¢ X Dev
— where y=1and ¢=4
* When variance is small, TimeOut is close to EStRTT
* When variance is large Dev dominates the calculation
« Another benefit of this mechanism is that it is very efficient
to implement in code (does not require floating point)
* Notes
— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later)
e These issues have been studied and dealt with in new RFC’s
for RTO calculation.
* TCP RENO uses Jacobson/Karels

CS 640

