
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture16

CS 640

Today’s lecture

• TCP congestion control
– Overview of RENO TCP
– Reacting to Congestion
– SS/AIMD example

CS 640

TCP Congestion Control

• Idea
– assumes best-effort network (FIFO or FQ routers)

each source determines network capacity for itself
– uses implicit feedback
– ACKs pace transmission (self-clocking)

• Challenge
– determining the available capacity in the first place
– adjusting to changes in the available capacity

2

CS 640

TCP RENO Overview

• Standard TCP functions
– Listed in last lecture: connections, reliability, etc.

• Jacobson/Karles RTT/RTO calculation
• Slow Start
• Congestion control/management

– Additive Increase/ Multiplicative Decrease (AIMD)
– Fast Retransmit/Fast Recovery

CS 640

Additive Increase/Multiplicative
Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection:
CongestionWindow
– limits how much data source has in transit

MaxWin = MIN(CongestionWindow,
AdvertisedWindow)

EffWin = MaxWin - (LastByteSent -
LastByteAcked)

• Idea:
– increase CongestionWindow when congestion goes down
– decrease CongestionWindow when congestion goes up

CS 640

AIMD (cont)
• Question: how does the source determine

whether or not the network is congested?
• Answer: a timeout occurs

– timeout signals that a packet was lost
– packets are seldom lost due to transmission error
– lost packet implies congestion
– RTO calculation is critical

3

CS 640

AIMD (cont)

• In practice: increment a little for each ACK
Increment = 1/CongestionWindow
CongestionWindow += Increment
MSS = max segment size = size of a single packet

Source Destination

…

• Algorithm
– increment CongestionWindow by one

packet per RTT (linear increase)
– divide CongestionWindow by two on

timeouts (multiplicative decrease – fast!!)
– CongestionWindow always >= 1 MSS

CS 640

AIMD (cont)
• Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

CS 640

Slow Start
• Objective: determine the available

capacity in the first
– Additive increase is too slow

• One additional packet per RTT

• Idea:
– begin with CongestionWindow = 1 pkt
– double CongestionWindow each RTT

(increment by 1 packet for each ACK)
– This is exponential increase to probe for

available bandwidth
• SSTHRESH indicates when to begin

additive increase

Source Destination

…

4

CS 640

Slow Start contd.
• Exponential growth, but slower than all at once
• Used…

– when first starting connection
– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

CS 640

SSTHRESH and CWND

• SSTHRESH called CongestionThreshold in book
• Typically set to very large value on connection setup
• Set to one half of CongestionWindow on packet loss

– So, SSTHRESH goes through multiplicative decrease for each
packet loss

– If loss is indicated by timeout, set CongestionWindow = 1
• SSTHRESH and CongestionWindow always >= 1 MSS

• After loss, when new data is ACKed, increase CWND
– Manner depends on whether we’re in slow start or congestion

avoidance

CS 640

SS Example
Client Server

SYN (40 bytes)

SYN + ACK (40 bytes)

ACK + Data (150 bytes)

ACK 1461

Data 1460

Client embeds request
For 30KB

Client advertises receive
window of 8KB

MSS is 1.5kB with
standard 40B header

Client uses delayed
acknowledgements
(200ms)

Begin by sending
bytes 1:1460
CW=1, DIF=0, SST=44, RW=5

Data 4380

ACK 4381

Data 8760
ACK 7301

CW=2, DIF=0, SST=44, RW=5

CW=3, DIF=0, SST=44, RW=5

CW=4, DIF=1, SST=44, RW=5

CW=5, DIF=2, SST=44, RW=5
ACK 10221

Data 13140

5

CS 640

SS Example contd.
Client Server

Data 17520

ACK 13141
CW=6, DIF=3, SST=44, RW=5

CW=5, DIF=2, SST=44, RW=5
ACK 10221

Data 13140

ACK 16061
Data 20440 ACK 18981 CW=7, DIF=3, SST=44, RW=5

Data 23360
ACK 21901

CW=8, DIF=3, SST=44, RW=5

CW=9, DIF=3, SST=44, RW=5 ACK 24821
Data 26280

Data 29200
ACK 27741

Data 30000

CW=10, DIF=3, SST=44, RW=5

FIN (40 bytes) ACK 30001ACK 27741

FIN + ACK (40 bytes)

ACK (40 bytes)

CW=11, DIF=3, SST=44, RW=5

CW=12, DIF=3, SST=44, RW=5

Server initiates active close

CS 640

Fast Retransmit and Fast
Recovery

• Problem: coarse-grain
TCP timeouts lead to
idle periods

• Fast retransmit: use 3
duplicate ACKs to
trigger retransmission

• Fast recovery: start at
SSTHRESH and do
additive increase after
fast retransmit

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

CS 640

Fast Retransmit Results

• This is a graph of fast retransmit only
– Avoids some of the timeout losses

• Fast recovery
– skip the slow start phase in this graph at 3.8 and 5.5 sec
– go directly to half the last successful CongestionWindow

(ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

