
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture20

CS 640

Today’s lecture

• World Wide Web
– HTML
– HTTP
– Caching
– Content delivery networks

CS 640

HTML Basics
• Hyper-Text Markup Language

– A subset of Standardized General Markup Language (SGML)
– Facilitates a hyper-media environment

• Embedded links to other documents and applications (ftp, email, etc.)

• Documents use elements to “mark up” or identify sections of text
for different purposes or display characteristics

• Mark up elements are not seen by the user when page is displayed
• Documents are rendered by browsers
• NOTE: Not all documents in the Web are HTML!
• Most people use WYSIWYG editors (MS Word) to generate

HTML

2

CS 640

HTML Example

<HTML>
<HEAD>
<TITLE> PB’s HomePage </TITLE>
</HEAD>
<BODY>
<CENTER>
</CENTER>
<P><CENTER><H1>UW Computer Science Department</H1></CENTER>
Welcome to my goofy HomePage!
…
 Spot’s Page
</BODY>
</HTML>

CS 640

Beyond static documents

• Programs on the client produce output
– JavaScript
– Java applets

• Programs on the server generate HTML
– CGI scripts
– ASP (Active Server Pages) use Microsoft’s VB
– JSP (JavaServer Pages)
– PHP is an open source alternative

CS 640

The Web: the http protocol

http: hypertext transfer protocol
• Web’s application layer

protocol
• client/server model

– client: browser that requests,
receives, “displays” Web objects

– server: Web server sends objects
in response to requests

• http1.0: RFC 1945
• http1.1: RFC 2068

PC running
Explorer

Server
running

apache Web
server

Mac running
Navigator

http request

http request

http response

http response

3

CS 640

The http protocol: more

http: TCP transport service:
• client initiates TCP

connection (creates socket) to
server, default port 80

• server accepts TCP
connection from client

• http messages (application-
layer protocol messages)
exchanged between browser
and Web server

• TCP connection closed

http is “stateless”
• server maintains no

information about past
client requests

Protocols that maintain “state”
are complex!

• past history (state) must be
maintained

• if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

aside

CS 640

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP connection
to http server (process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu
waiting for TCP connection at
port 80. “accepts” connection,
notifying client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.ind
ex), sends message into sockettime

(contains text,
references to 10

jpeg images)

CS 640

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. http server closes TCP
connection.

time

4

CS 640

HTTP/1.0 Network Interaction
• Clients make requests to port 80 on servers

– Uses DNS to resolve server name

• Clients make separate TCP connection for each URL
– Some browsers open multiple TCP connections

• Netscape default = 4

• Server returns HTML page
– Many types of servers with a variety of implementations
– Apache is the most widely used

• Freely available in source form

• Client parses page
– Requests embedded objects

CS 640

HTTP/1.1 Enhancements
• HTTP/1.0 is a “stop and wait” protocol

– Separate TCP connection for each file
• Connect setup and tear down is incurred for each file
• Inefficient use of packets
• Server must maintain many connections in TIME_WAIT

• Mogul and Padmanabhan studied these issues in ’95
– Resulted in HTTP/1.1 specification focused on performance

enhancements
• Persistent connections
• Pipelining
• Enhanced caching options
• Support for compression

CS 640

http message format: request

• two types of http messages: request, response
• http request message:

– ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

5

CS 640

http request message: general format

CS 640

http message format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

CS 640

http response status codes

200 OK
– request succeeded, requested object later in this message

301 Moved Permanently
– requested object moved, new location specified later in

this message (Location:)
400 Bad Request

– request message not understood by server
404 Not Found

– requested document not found on this server

In first line in server->client response message.
A few sample codes:

6

CS 640

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

CS 640

User-server interaction: authentication
Authentication : control access

to server content
• authorization credentials:

typically name, password
• stateless: client must present

authorization in each request
– authorization: header line

in each request
– if no authorization: header,

server refuses access,
sends
WWW authenticate:

header line in response

client server

usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

CS 640

Cookies: keeping “state”

• server-generated # ,
server-remembered #,
later used for:
– authentication
– remembering user

preferences, previous
choices

• server sends “cookie” to
client in response msg
Set-cookie: 1678453

• client presents cookie in
later requests
cookie: 1678453

client server
usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific
action

cookie-
spectific
action

7

CS 640

Conditional GET: client-side caching

• Goal: don’t send object if
client has up-to-date
cached version

• client: specify date of
cached copy in http request
If-modified-since:
<date>

• server: response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not
Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

<data>

object
modified

CS 640

Today’s lecture

• World Wide Web
– HTML
– HTTP
– Caching
– Content delivery networks

CS 640

Web Caches (proxy server)

• user sets browser: Web
accesses via web cache

• client sends all http
requests to web cache
– object in web cache: web

cache returns object
– else web cache requests

object from origin server,
then returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http request

http response

http response

http request

http response

origin
server

origin
server

8

CS 640

Why Web Caching?
Assume: cache is “close” to client
• Advantages

– smaller response time: cache
“closer” to client

– decrease traffic to distant servers
(uplink often bottleneck)

• Disadvantages
– introduces new point of failure
– some overhead on misses
– does not work with dynamic

personalized content

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.5 Mbps
access link

institutional
cache

CS 640

Content Delivery Networks
• e.g. Akamai, DigitalIsland, etc.
• Has its own network of caches that replicates

some content of the customer (e.g. cnn.com)
– e.g. all images
– In the index.html file all references of:

www.cnn.com/images/sports.gif is re-mapped to
www.akamai.com/www.cnn.com/images/sports.gif

• Server domain name: www.akamai.com
• File: www.cnn.com/images/sports.gif

CS 640

Content Delivery Networks

• Client downloads www.cnn.com/index.html
• Next tries to resolve www.akamai.com
• When local nameserver of client tries to resolve

www.akamai.com
– DNS server of Akamai will identify one of its caches that is

closest to the local nameserver of client
– Expectation is that the client is close to its local nameserver

• Client connects to the nearby cache and gets the image

