CS 640 Introduction to Computer
Networks

Lecture22

CS 640

Today’s lecture

 Peer to peer applications
— Napster
— Gnutella
— KaZaA
— Chord

CS 640

What is P2P?

« Significant autonomy from central servers

» Exploits resources at the edges of Internet
— Bandwidth
— Storage
— Processing

» Resources at edge have intermittent connectivity
* Dynamic joins and leaves

CS 640

Applications

» P2P file sharing

— Napster, Gnutella, KaZaA, etc.
Storage and lookup

— Chord, CAN, etc.

e P2P communication

— Instant messaging
* P2P computation
— seti@home

CS 640

P2P file sharing software

« Allows Alice to openup * Allows users to search

a directory in her file the peers for content
system based on keyword
— Anyone can retrieve a matches:

file from directory — Like Google

— Like a Web server
» Allows Alice to copy
files from other users’
open directories:
— Like a Web client

CS 640

Napster

* The most (in)famous file sharing program

5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

— 12/99: First lawsuit e
3/00: 25% UW traffic Napster '
— 2/01: US Circuit Court of
Appeals: Napster knew users
violating copyright laws
— 7/01: Simultaneous online:

Napster 160K, Gnutella: 40K,
Morpheus (KaZaA): 300K

CS 640

Napster

 Judge orders Napster to

8M
pull plug in July ‘01
 Other file sharing apps 3{’ "
take over! M
£
2M
00
== gnutella
== napster

== fastrack (KaZaA)

CS 640

How Napster works

napster.com
L. File list centralized directory

and IP

address is
uploaded @
2 |

CS 640

How Napster works

napster.com
centralized directory

2. User
requests
search at

server. Query @
and /

i R
2
4

CS 640

How Napster works

napster.com
3. User pings centralized directory
hosts that
apparently
have data.

Looks for @ \
best transfer B

rate.

CS 640

How Napster works

napster.com
4. User chooses centralized directory

server

Napster's
centralized
server farm had
difficult time
keeping

up with traffic o

CS 640

2. Unstructured P2P File Sharing

« Napster
* Gnutella
* KaZaA
e Chord

CS 640

Distributed Search/Flooding

CS 640

Distributed Search/Flooding

Response

CS 640

Gnutella

* Focus: decentralize search for files
— Central directory server no longer the bottleneck
— More difficult to “pull plug”

» Each application instance serves to:
— Store selected files
— Route queries from and to its neighboring peers
— Respond to queries if file stored locally
— Serve files

CS 640

Gnutella

* Gnutella history:
— 3/14/00: release by AOL, almost immediately withdrawn
— Became open source
— Many iterations to fix poor initial design (poor design
turned many people off)
* Issues:
— How much traffic does one query generate?
— How many hosts can it support at once?
— What is the latency associated with querying?
— Is there a bottleneck?

CS 640

Gnutella: limited scope query

Searching by flooding:
* If you don’t have the file you want, query 7
of your neighbors.

« If they don’t have it, they contact 7 of their
neighbors, for a maximum hop count of 10.

» Reverse path forwarding for responses (not
files)

CS 640

Gnutella overlay management

* New node uses bootstrap node to get IP
addresses of existing Gnutella nodes

* New node establishes neighboring relations by
sending join messages

CS 640

Gnutella in practice

¢ Gnutella traffic << KaZaA traffic
e KaZaA:

— hierarchy, queue management, parallel
download,...

CS 640

Gnutella Discussion:

« researchers like it because it’s open source
— but is it truly representative?

« architectural lessons learned?

* good source for technical info/open questions:
http://www.limewire.com/index.jsp/tech_papers

CS 640

2. Unstructured P2P File Sharing

« Napster
* Gnutella
* KaZaA
e Chord

CS 640

KaZaA: The service

* More than 3 million up peers sharing over
3,000 terabytes of content

* More popular than Napster ever was

* More than 50% of Internet traffic?

* MP3s & entire albums, videos, games
* Optional parallel downloading of files

* Automatically switch to new download server
when current server becomes unavailable

¢ Provides estimated download times

CS 640

KaZaA: The service (2)

» User can configure max number of simultaneous
uploads and max number of simultaneous downloads

* Queue management at server and client
— Frequent uploaders can get priority in server queue

» Keyword search
— User can configure “up to x” responses to keywords

» Responses to keyword queries come in waves; stops
when x responses are found

» To user, service resembles Google, but provides links
to MP3s and videos, not Web pages

CS 640

KaZaA: Technology

Software
* Proprietary, files and control data encrypted
 Hints:

— KaZaA Web site gives a few

— Reverse engineering attempts described on Web
+ Everything is HTTP requests and responses
Architecture
* Hierarchical
* Cross between Napster and Gnutella

CS 640

KaZaA: Architecture

Each peer is either a
supernode or is
assigned to a
supernode

Each supernode
knows about many
other supernodes
(almost mesh overlay)

CS 640

KaZaA: Architecture (2)

* Nodes with more bandwidth and more
available are designated as supernodes

» Each supernode acts as a mini-Napster hub,
tracking the content and IP addresses of its
descendants

* Guess: supernode has (on average) 200-500
descendants; roughly 10,000 supernodes

* There is also dedicated user authentication
server and supernode list server

CS 640

KaZaA: Overlay maintenance

« List of potential supernodes included within
software download

* New peer goes through list until it finds
operational supernode
— Connects, obtains more up-to-date list

— Node then pings 5 nodes on list and connects with
the one with smallest RTT

* If supernode goes down, node obtains updated

list and chooses new supernode

CS 640

KaZaA Queries

* Node first sends query to supernode
— Supernode responds with matches
— If x matches found, done.
» Otherwise, supernode forwards query to subset
of supernodes
— If total of x matches found, done.
» Otherwise, query further forwarded
— Probably by original supernode

CS 640

Parallel Downloading; Recovery

« If file is found in multiple nodes, user can
select parallel downloading

* Most likely HTTP byte-range header used to
request different portions of the file from
different nodes

+ Automatic recovery when server peer stops
sending file

CS 640

3. Structured P2P: DHT Approaches

* Want a storage and lookup service with better
service guarantees and more efficient
* A Distributed Hash Table (DHT)
— Chord
— CAN
— Pastry
— Tapestry

CS 640

10

Challenge: Locating Content

| ==

Lol
>54
O

Here you go!

\
I'm looking for
€S640 Notes

vvr

» Simplest strategy: expanding ring search

— If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

— Need many cached copies to keep search overhead small

CS 640

Directed Searches

* Idea:
— Assign particular nodes to hold particular content (or
pointers to it, like an information booth)

— When a node wants that content, go to the node that is
supposed to have or know about it

* Challenges:

— Distributed: want to distribute responsibilities among
existing nodes in the overlay

— Adaptive: nodes join and leave the P2P overlay
« distribute knowledge responsibility to joining nodes
« redistribute knowledge responsibility from those leaving

CS 640

DHT Step 1: The Hash

« Introduce a hash function to map the object being searched
for to a unique identifier:

— e.g., h(“CS640 Class notes”) — 8045
Distribute the range of the hash function among all nodes

in the network
1000-1999

1500-4999

4500-6999

9500-9999

* Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

CS 640

11

DHT Step 2: Routing

* For each object, node(s) whose range(s) cover
that object must be reachable via a “short” path
by any querying node

« Different approaches for routing requests

— (CAN,Chord,Pastry,Tapestry) differ fundamentally
only in the routing approach

— They all rely on hash functions to map objects

CS 640

DHT API

« each data item (e.g., file or metadata with
pointers) has a key in some ID space
* In each node, DHT software provides API:
— Application gives API key k
— API returns IP address of node responsible for k
* API is implemented with an underlying DHT
overlay and distributed algorithms

CS 640

DHT API

DHT substrate

1 responsible

uoneorjdde

overlay
network

g
==
iz
ot
L
s

application
DHT substrate

application

DHT substrate

CS 640

12

DHT Layered Architecture

Event Network N o
notification| | storage : P2P application layer

P2P substrate
(self-organizing
overlay network)

~
DHT
!
Internet

CS 640

Consistent hashing (1)

* Overlay network is a circle

* Each node has randomly chosen id
— Keys in same id space

» Node’s successor in circle is node with next
largest id
— Each node knows IP address of its successor

+ Key is stored in closest successor

CS 640

query

Consistent hashing (2)

0001 ,
O(N) messages o Who's resp
for file 1110

on avg to resolve

Note: no locality
among neighbors 1000

CS 640

12

Consistent hashing (3)

Node departures Node joins

* Each node must track s >2 * You’re new, node id k
successors Ask any node n to find the

* If your successor leaves, node n’ that is the successor
take next one for id k

* Ask your new successor for
list of its successors; update
YOUT § SUCCESSOrs Tell your predecessors to

update their successor lists

* Get successor list from n’

¢ Thus, each node must track
its predecessor

CS 640

Consistent hashing (4)

* Overlay is actually a circle with small chords
for tracking predecessor and k successors

» # of neighbors =s+1: O(1)

— The ids of your neighbors along with their IP
addresses is your “routing table”

* Average # of messages to find key is O(N)

Can we do better?

CS 640

Chord

» Nodes assigned 1-dimensional IDs in hash space at
random (e.g., hash on IP address)

» Consistent hashing: Range covered by node is from
previous ID up to its own ID (modulo the ID space)

14

Chord Routing

» A node s’s i neighbor has the ID that is
equal to s+2! or is the next largest ID (mod
ID space), i>0

* To reach the node handling ID t, send the
message to neighbor #log,(t-s)

* Requirement: each node s must know about
the next node that exists clockwise on the
Chord (0™ neighbor)

 Set of known neighbors called a finger table

CS 640

Chord Routing (cont’d)
A node s is node t’s neighbor if s is the closest node to t+2f mod
H for some i. Thus,
— each node has at most log, N neighbors
— for any object, the node whose range contains the object is reachable from
any node in no more than log, N overlay hops

Given K objects, with high probability each node has at most

(1 +1log, N) K /N in its range i [Finger
* When a new node joins or leaves the overlay, ‘abéc g";
O(K / N) objects move between nodes flode
1 0|72 Closest
87 8 node
86 172 clockwise
2|72 to
3] 86 67+2' mod
100
4|86
5|1
72 32 cse40
B 6|32

Chord Node Insertion

One protocol addition: each node knows its closest counter-
clockwise neighbor

A node selects its unique (pseudo-random) ID and uses a
bootstrapping process to find some node in the Chord

Using Chord, the node identifies its successor 82—

A new node’s predecessor is 8687
. d(86)-72

its successor’s former pred(86) i
predecessor

Example: Insert 82

CS 640
67

15

Chord Node Insertion (cont’d)

« First: set added node s’s fingers correctly
— s’s predecessor t does the lookup for each distance of 2!

from s
i | Finger
table for
1 Lookups from node 72 node 82
87 86—
86 8 Lookup(83) = 86 o] 86
Lookup(84) = 86 ———
82 1|86
Lookup(86) = 86 ——— [;]'gq
Lookup(90)=1 —— 31
Lookup(98)=1 ——
32 ookup(98) 41
72 s Lookup(14) = 32 ——— 5|32
Lookup(46) = 67 ——
cs 54up 6167

Chord Node Insertion (cont’d)

« Next, update other nodes’ fingers
about the entrance of s (when
relevant). For each i:

— Locate the closest node to s (counter- 86
clockwise) whose 2i-finger can point
to s: largest possible is s - 2! 82 4
— Use Chord to go (clockwise) to

largest node t before or at s - 2!

« route to s - 21, if arrived at a larger
node, select its predecessor as t 75 ’

If t’s 2\-finger routes to a node larger ~ 23-finger=86 67 2¥finger=67|

than s 82 23-finger=Bb

+ change t’s 2i-finger to s 82
« set t=predecessor of t and repeat
— Else i++, repeat from top

* O(log?N)

eg., fori=3

CS 640

Chord Node Deletion

* Similar process can perform deletion

87
86

®

32
23'1‘inggr~=)!272 67 23-finger=67
86 23-finger=B2
86

eg., fori=3

CS 640

1A

