
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture23

CS 640

Today’s lecture

• Network security
– Encryption Algorithms
– Authentication Protocols
– Message Integrity Protocols

CS 640

Why do we care about Security?
• “Toto… I have a feeling we’re not in Kansas

anymore.” Dorothy, The Wizard of Oz
• “The art of war teaches us to rely not on the likelihood of the

enemy’s not coming, but on our own readiness to receive him;
not on the chance of his not attacking, but rather on the fact
that we have made our position unassailable.” The Art of War,
Sun Tzu

• There are bad guys out there who can easily take
advantage of you.

• Reference: Cryptography and Network Security,
Principles and Practice, William Stallings, Prentice
Hall

2

CS 640

Overview
• Security services in networks

– Privacy: preventing unauthorized release of information
– Authentication: verifying identity of the remote participant
– Integrity: making sure message has not been altered

• Cryptography algorithms – building blocks for security
– Privacy/Authentication

• Secret key (e.g., Data Encryption Standard (DES))
• Public key (e.g., Rivest, Shamir and Adleman (RSA))

– Integrity
• Message digest/hash (e.g., Message Digest version 5 (MD5))

Security

Cryptography
algorithms

Public
key

(e.g., RSA)

Secret
key

(e.g., DES)

Message
digest

(e.g., MD5)

Security
services

AuthenticationPrivacy Message
integrity

CS 640

Issues in Security
• Threat models

– How are bad guys trying to do bad things to you?

• Key distribution
– How do folks get their keys?

• Implementation and verification
– How can we be sure systems are secure?

• Non-goal: details of crypto algorithms
– We are not going to focus on proving anything about

crypto algorithms
• See CS642

CS 640

Crypto 101

• Cryptographic algorithms determine how to generate
encoded text (ciphertext) from plaintext using keys
(string of bits)
– Can only be decrypted by key holders

• Algorithms
– Published and stable
– Keys must be kept secret
– Keys cannot be deduced
– Large keys make breaking code VERY hard
– Computational efficiency

3

CS 640

Secret Key (DES)

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

• Approach: Make algorithm so complicated that none
of the original structure of plaintext exists in ciphertext

CS 640

• Encrypt 64 bit blocks of plaintext with 64-bit key
(56-bits + 8-bit parity)

• 16 rounds

Initial permutation

Round 1

Round 2

Round 16

56-bit
key

Final permutation

…

+

F

Li– 1 Ri– 1

Ri

Ki

Li

• Each Round

• L,R = 32 bit halves of 64 bit block
• K = 48 bits of 64 bit key
• F = combiner function
• + = XOR

CS 640

• Encryption steps are the same as decryption
• Repeat for larger messages (cipher block chaining)

– IV = initialization vector = random number generated
by sender

Block1

IV

DES

Cipher1

Block2

DES

Block3

DES

Block4

DES

+

Cipher2 Cipher3 Cipher4

+++

4

CS 640

Public Key (RSA)

• One of the coolest algorithms ever!
• Encryption

– ciphertext = c = memod n (<e, n> = public key)
• Decryption

– Message = m = cdmod n (<d, n> = private key)
• M < n

– Larger messages treated as concatenation of multiple n sized blocks

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key

CS 640

RSA contd.
• Choose two large prime numbers p and q (each 256 bits)
• Multiply p and q together to get n
• Choose the encryption key e, such that e and (p - 1) x (q - 1)

are relatively prime.
• Two numbers are relatively prime if they have no common

factor greater than one
• Compute decryption key d such that

d = e- 1mod ((p - 1) x (q - 1))
• Construct public key as (e, n)
• Construct public key as (d, n)
• Discard (do not disclose) original primes p and q

CS 640

RSA contd.
• See example in book for applying RSA

– Many others as well

• Usage
– for privacy encrypt with recipient’s public key and he

decrypts with private key
– for authentication encrypt with your private key and the

recipient decrypts with your public key

• Security based on premise that factoring is hard
– The bigger the key the harder it is to factor
– The bigger the key is more computationally expensive it

is to encrypt/decrypt

5

CS 640

Message Digest
• Cryptographic checksum

– a fixed length sequence of bits which is used to protect the receiver
from accidental changes to the message; a cryptographic checksum
protects the receiver from malicious changes to the message.

• One-way function
– given a cryptographic checksum for a message, it is virtually

impossible to figure out what message produced that checksum; it
is not computationally feasible to find two messages that hash to
the same cryptographic checksum.

• Relevance
– if you are given a checksum for a message and you are able to

compute exactly the same checksum for that message, then it is
highly likely this message produced the checksum you were given.

CS 640

Today’s lecture

• Network security
– Encryption Algorithms
– Authentication Protocols
– Message Integrity Protocols

CS 640

Authentication Protocols
• Three-way handshake (uses secret key - eg. password)

– E(m,k) = encrypt message m with key k; C/SHK = client/server
handshake key; x, y = random numbers; SK = session key

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates server

Server authenticates client

CHK = SHK

6

CS 640

• Trusted third party (Kerberos)
– A and B share secret keys (KA, KB) with trusted third party S
– A,B =ID’s; T = timestamp; L = lifetime, K = session key

AS B

E((T, L, K, B), KA),

E((A, T), K),

E((T, L, K, A), KB)

A, B

E(T + 1, K)

E((T, L, K, A), KB) A authenticated to B

B authenticated to A

CS 640

• Public key authentication (using eg. RSA)

A B

E(x, PublicB)

x

B authenticated to A

CS 640

Message Integrity Protocols
• Digital signature using RSA

– special case of a message integrity where the code can only have
been generated by one participant

– compute signature with private key and verify with public key
• Keyed MD5 (uses MD5 and RSA)

– sender: m + MD5(m + k) + E(k, private) where k =
random number

– receiver
• recovers random key using the sender’s public key
• applies MD5 to the concatenation of this random key message

• MD5 with RSA signature
– sender: m + E(MD5(m), private)
– receiver

• decrypts signature with sender’s public key
• compares result with MD5 checksum sent with message

