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CS 640 Introduction to Computer 
Networks

Lecture23
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Today’s lecture

• Network security
– Encryption Algorithms
– Authentication Protocols 
– Message Integrity Protocols 
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Why do we care about Security?
• “Toto… I have a feeling we’re not in Kansas 

anymore.”  Dorothy, The Wizard of Oz
• “The art of war teaches us to rely not on the likelihood of the 

enemy’s not coming, but on our own readiness to receive him; 
not on the chance of his not attacking, but rather on the fact 
that we have made our position unassailable.” The Art of War, 
Sun Tzu

• There are bad guys out there who can easily take 
advantage of you.

• Reference:  Cryptography and Network Security, 
Principles and Practice, William Stallings, Prentice 
Hall
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Overview
• Security services in networks

– Privacy: preventing unauthorized release of information
– Authentication: verifying identity of the remote participant 
– Integrity: making sure message has not been altered 

• Cryptography algorithms – building blocks for security 
– Privacy/Authentication

• Secret key (e.g., Data Encryption Standard (DES))
• Public key (e.g., Rivest, Shamir and Adleman (RSA))

– Integrity
• Message digest/hash (e.g., Message Digest version 5 (MD5))
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Issues in Security
• Threat models

– How are bad guys trying to do bad things to you?

• Key distribution
– How do folks get their keys?

• Implementation and verification
– How can we be sure systems are secure?

• Non-goal: details of crypto algorithms
– We are not going to focus on proving anything about 

crypto algorithms
• See CS642
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Crypto 101

• Cryptographic algorithms determine how to generate 
encoded text (ciphertext) from plaintext using keys 
(string of bits) 
– Can only be decrypted by key holders

• Algorithms
– Published and stable
– Keys must be kept secret
– Keys cannot be deduced
– Large keys make breaking code VERY hard
– Computational efficiency
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Secret Key (DES)

Plaintext

Encrypt with
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• Approach:  Make algorithm so complicated that none 
of the original structure of plaintext exists in ciphertext
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• Encrypt  64 bit blocks of plaintext with 64-bit key 
(56-bits + 8-bit parity)

• 16 rounds

Initial permutation
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• Each Round

• L,R = 32 bit halves of 64 bit block
• K = 48 bits of 64 bit key
• F = combiner function
• + = XOR

CS 640

• Encryption steps are the same as decryption
• Repeat for larger messages (cipher block chaining)

– IV = initialization vector = random number generated 
by sender
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Public Key (RSA)

• One of the coolest algorithms ever!
• Encryption

– ciphertext = c = memod n   (<e, n> = public key)
• Decryption

– Message = m = cdmod n    (<d, n> = private key)
• M < n

– Larger messages treated as concatenation of multiple n sized blocks

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key
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RSA contd.
• Choose two large prime numbers p and q (each 256 bits)
• Multiply p and q together to get n
• Choose the encryption key e, such that e and (p - 1) x (q - 1) 

are relatively prime.
• Two numbers are relatively prime if they have no common 

factor greater than one
• Compute decryption key d such that

d = e- 1mod ((p - 1) x (q - 1))
• Construct public key as (e, n)
• Construct public key as (d, n)
• Discard (do not disclose) original primes p and q
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RSA contd.
• See example in book for applying RSA

– Many others as well

• Usage
– for privacy encrypt with recipient’s public key and he 

decrypts with private key
– for authentication encrypt with your private key and the 

recipient decrypts with your public key

• Security based on premise that factoring is hard
– The bigger the key the harder it is to factor
– The bigger the key is more computationally expensive it 

is to encrypt/decrypt
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Message Digest
• Cryptographic checksum 

– a fixed length sequence of bits which is used to protect the receiver 
from accidental changes to the message; a cryptographic checksum
protects the receiver from malicious changes to the message.

• One-way function
– given a cryptographic checksum for a message, it is virtually 

impossible to figure out what message produced that checksum; it
is not computationally feasible to find two messages that hash to 
the same cryptographic checksum.

• Relevance
– if you are given a checksum for a message and you are able to 

compute exactly the same checksum for that message, then it is 
highly likely this message produced the checksum you were given.
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Today’s lecture

• Network security
– Encryption Algorithms
– Authentication Protocols 
– Message Integrity Protocols 
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Authentication Protocols 
• Three-way handshake (uses secret key - eg. password)

– E(m,k) = encrypt message m with key k; C/SHK = client/server 
handshake key; x, y = random numbers; SK = session key

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates server

Server authenticates client

CHK = SHK



6

CS 640

• Trusted third party (Kerberos)
– A and B share secret keys (KA, KB) with trusted third party S
– A,B =ID’s; T = timestamp; L = lifetime, K = session key

AS B

E((T, L, K, B), KA),

E((A, T), K), 

E((T, L, K, A), KB)

A, B

E(T + 1, K)

E((T, L, K, A), KB) A authenticated to B

B authenticated to A

CS 640

• Public key authentication (using eg. RSA) 

A B

E(x, PublicB)

x 

B authenticated to A
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Message Integrity Protocols
• Digital signature using RSA

– special case of a message integrity where the code can only have
been generated by one participant 

– compute signature with private key and verify with public key
• Keyed MD5 (uses MD5 and RSA)

– sender:  m + MD5(m + k) + E(k, private) where k = 
random number

– receiver
• recovers random key using the sender’s public key
• applies MD5 to the concatenation of this random key message

• MD5 with RSA signature
– sender:  m + E(MD5(m), private) 
– receiver

• decrypts signature with sender’s public key
• compares result with MD5 checksum sent with message


