# CS 640 Introduction to Computer Networks

Lecture24

CS 640

# Network security (continued)

- · Key distribution
- · Secure Shell
  - Overview
  - Authentication
  - Practical issues
- Firewalls
- · Denial of Service Attacks
  - Definition
  - Examples

CS 640

# Key Distribution − a first step

- How can we be sure a key belongs to the entity that purports to own it?
- Solution = certificates
  - special type of digitally signed document:
    - "I certify that the public key in this document belongs to the entity named in this document, signed X."
  - X is the name of the entity doing the certification
  - Only useful to the entity which knows the public key for X
  - Certificates themselves do not solve key distribution problem but they are a first step
- · Certified Authority (CA)
  - administrative entity that issues certificates
  - useful only to someone that already holds the CA's public key
  - can trust more than one CA

| •    |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| -    |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| _    |  |
|      |  |
|      |  |
|      |  |
|      |  |
| -    |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |

# Key Distribution (cont)

- · Chain of Trust
  - if X certifies that a certain public key belongs to Y, and Y certifies that another public key belongs to Z, then there exists a chain of certificates from X to Z
  - someone that wants to verify Z's public key has to know
     X's public key and follow the chain
  - X.509 is a standard for certificates

#### · Certificate Revocation List

- Means for removing certificates
- Periodically updated by CA

CS 640

# Key Distribution (cont.)

- PGP (Pretty Good Privacy) provides email encryption and authentication
- · Uses "web of trust" instead of "chain of trust"
  - You assign various levels of trust to public keys (e.g. if you got the key when you met face to face you trust it a lot)
  - People certify others' public keys
  - You trust a public key if it has enough "chains of trust"
    - · The more disjoint paths in the trust graph the better
    - The shorter the paths the better
    - $\bullet\,$  The more you trust the heads of the paths the better

CS 640

# Network security (continued)

- Key distribution
- · Secure Shell
  - Overview
  - Authentication
  - Practical issues
- Firewalls
- · Denial of Service Attacks
  - Definition
  - Examples

# Secure Shell (SSH) Overview · SSH is a secure remote virtual terminal application

- Provides encrypted communication over an insecure network
- - · Assumes eavesdroppers can hear all communications between hosts
  - · Provides different methods of authentication
  - · Encrypts data exchanged between hosts
- Intended to replace insecure programs such as telnet, rsh, etc.
- Includes capability to securely transfer file
- Can forward X11 connections and TCP ports securely
- · Very popular and widely used
  - Not invulnerable!

CS 640

#### SSH authentication

- · Client authenticates server
  - The client caches the public keys of all servers it talks to
    - User can add new keys to the cache
    - · Otherwise the user is warned when first connecting to a given server
- · Server authenticates client
  - Through user's password
  - Public RSA key the user puts ahead of time on the server
  - Other, riskier methods
- At connection setup server and client agree on a session key used to encrypt communication
  - Many algorithms allowed (IDEA, Blowfish, Triple DES, etc.)

CS 640

#### SSH in Practice

- Host public/private key is generated when SSH is installed
  - Public key must be in ~/.ssh/known\_hosts on remote systems
- ssh-keygen command is used to generate users public/private keys
  - Public key copied to ~/.ssh/authorized\_keys on remote systems
  - Each private key in ~/.ssh/identity requires a pass phrase when used
    - · Ssh-agent eliminates need for repeated typing of pass phrase
- · Password authentication is vulnerable to guessing attacks
  - Server logs all unsuccessful login attempts
- · X11 and port forwarding enable encrypted pipe through the Internet
  - Can be used to securely access insecure application eg. SMTP
  - Can be used to circumvent firewalls

| -           |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <u></u>     |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

# Network security (continued)

- Key distribution
- Secure Shell
  - Overview
  - Authentication
  - Practical issues
- Firewalls
- · Denial of Service Attacks
  - Definition
  - Examples

CS 640

#### Firewalls – overview

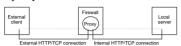
- Firewalls restrict communication between an organization's computers and the outside world
  - Keep the bad guys on the outside from exploiting vulnerabilities on the inside
  - Without restricting legitimate traffic
- NAT boxes implement a popular firewall policy
  - Allow internal clients to connect to outside servers
  - Do not allow inbound connections
- · Two types of firewalls
  - Filter based (layer 4)
  - Proxy based (application layer)

CS 640

# Firewalls Rest of the Internet Firewall Local site

- · Filter-Based Solution
  - Apply a set of rules to packets
    - · Look at packet headers
  - Example of rules

| ı | action | ourhost | port | theirhost | port | t comment                  |  |
|---|--------|---------|------|-----------|------|----------------------------|--|
|   | block  | *       | *    | BLASTER   | *    | We don't trust this system |  |
|   | allow  | OUR_GW  | 25   | *         | *    | Connects to our SMTP srvr  |  |


- Default: forward or not forward?
- How dynamic?

## **Proxy-Based Firewalls**

- Problem: complex policy
- · Example: web server



· Solution: proxy



- · Design: transparent vs. classical
- · Limitations: attacks from within

CS 640

# Network security (continued)

- Secure Shell
  - Overview
  - Authentication
  - Practical issues
- · Firewalls
- · Denial of Service Attacks
  - Definition
  - Examples

CS 640

# Denial of Service (DoS) Attacks

- · A general form of attacking inter-networked systems
  - Based on overloading end systems (or network)
  - Result is sever reduction in performance or complete shutdown of target systems
- Focus of attack can be links, routers (CPU) or end hosts
- · Flooding attacks pretty common nowadays
- Other most general form of attack is a break-in
  - Port scans
  - Buffer overflows
  - Password cracking...

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| - |  |
|   |  |
|   |  |

## Overloading a System

- The goal of DoS is to drown legitimate traffic in a sea of garbage traffic
  - Clients experience delays due to congestion
    - Dropped packets lead to exponential backoff in timeouts
  - Routers can become overloaded
- Servers become overloaded by increased number of connect requests
  - TCP connection setup requires state on server
  - Server is required to respond to SYN from clients
  - Clients don't respond to server's response

CS 640

## **IP Spoofing**

- · Insert a different source IP address in TCP and IP headers
  - DoS attackers spoof for two reasons
    - They don't want to be discovered
    - · Spoofing can add additional load
- If attacker spoofs a legitimate IP address
- Reset can be triggered by either attacked host or actual IP host
  - Frees resources immediately on server
  - Carefully chosen sequence #s block new connections from host
- · Attackers spoof with random IP addresses
  - Server response to client SYN will be lost
  - Server will not free resources for 75 seconds (typically)
  - SYN cookies on allow server kernel not to keep state

CS 640

# Key Elements of DoS Attack

- · Expansion in required work
  - Easy for me, harder for you
  - Expansion in IP spoofing
    - Me: generate SYNs as fast as possible (microseconds)
    - You: Timeout a SYN open every 75 seconds
- · Best effort protocols
  - Drop tail queues
  - No source specificity
  - Clients can be starved or slowed to crawl

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

# **DoS Attack Characteristics** • Expansion makes a only a few systems necessary - DDoS: attack from as many places as possible · Enables better utilization of network resources · Helps to prevent countermeasures · Helps to obscure attackers • DoS software readily available - Most found in IRC chat rooms • DoS attacks frequently preceded by break-ins to install DoS software onto "zombies" - Enables even more anonymity for attacker CS 640 Things making DoS Attacks easy · Lots of systems · Large networks · Naïve users with high speed Internet access · Savvy bad guys · Lots of free DoS software • Poor operating and management policies • Hugely complex software (on endhosts) with lots of well publicized holes · Lack of means for stopping attacks Dealing with DoS Attacks · Don't reserve state until receipt of client ACK - DOS attackers using spoofing don't send these · Otherwise they would have to keep state - Use of crypto to avoid saving state · Send one-use key with server response to SYN

· Response ACK must return key

- Cut off an attack at a firewall if you recognize it

• There are lots of companies in this space!

· Intrusion detection tools

Bro, SnortIP traceback methods

•

# Example of (D)DoS

- Code Red Worm
  - Released and identified on July 19, 2001
    - Infected over 250k systems in 9 hours
  - Takes advantage of hole in IIS on Win NT or Win 2k
    - And the fact that most people don't know IIS ON is default
  - Infected systems are completely compromised
  - Code Red installs itself in OS kernel
    - · Small and efficient
    - V1 could be eliminated by reboot
  - Spends half its time trying to infect other systems, and half its time DoS'ing the White House and Pentagon