CS 640 Introduction to Computer Networks

Lecture25

CS 640

Today's lecture

- Quality of Service
 - Requirements of multimedia applications
 - Scheduling and policing mechanisms
 - Architectures for enabling QoS
 - IntServ
 - DiffServ

Performance Requirements

Requirement: deliver data in "timely" manner

- interactive multimedia: short end-end delay
 - e.g., IP telephony, teleconferencing, virtual worlds
 - excessive delay impairs human interaction
- streaming (non-interactive) multimedia:
 - data must arrive in time for "smooth" playout
 - late arriving data introduces gaps in rendered audio/video
- reliability: 100% reliability not always required

CS 640

Interactive, Real-Time Multimedia

- applications: IP telephony, video conference, distributed interactive worlds
- end-end delay requirements:
 - video: < 150 msec acceptable
 - $-\,$ audio: <150 msec good, $\,<400$ msec OK
 - add application-level (packetization) and network delay
 - higher delays noticeable, impair interactivity

CS 640

Streaming Multimedia

Streaming:

- · media stored at source
- · transmitted to client
- streaming: client playout begins *before* all data has arrived
- timing constraint for still-to-be transmitted data: in time for playout

Improving QoS in IP Networks

Thus far: "making the best of best effort"

Future: next generation Internet with QoS guarantees

- RSVP: signaling for resource reservations
- Differentiated Services: differential guarantees
- Integrated Services: firm guarantees
- simple model for sharing and congestion studies:

Principles for QOS Guarantees

- Example: 1Mbps IP phone, ftp share 1.5 Mbps link.
 - bursts of FTP can congest router, cause audio loss
 - want to give priority to audio over FTP

Principle 1
 packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

CS 640

Principles for QOS Guarantees

- what if applications misbehave (audio sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- Marking and policing at edge routers (can keep state)

Principle 2 provide protection (*isolation*) for one class from others

Principles for QOS Guarantees

• Allocating *fixed* (non-sharable) bandwidth: *inefficient* use of network if flow doesn't use its allocation

While providing isolation, it is desirable to use resources as efficiently as possible

CS 640

Principles for QOS Guarantees

• Basic fact of life: can not support traffic demands beyond link capacity

Principle 4 -

Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

CS 640

Summary of QoS Principles

Let's next look at mechanisms for achieving this

Scheduling and Policing Mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: packet arrives queue full what to discard?
 - · tail drop: drop arriving packet
 - · priority: drop/remove on priority basis
 - · random: drop/remove randomly

Scheduling Policies: more

Priority scheduling: transmit highest priority packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g.
 IP source/dest, port numbers, etc..
 - Real world example?

Scheduling Policies: still more

Round robin scheduling:

- · multiple classes
- cyclically scan class queues, serving one from each class (if available)
- real world example?

Scheduling Policies: still more

Weighted Fair Queuing:

- · generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

Policing Mechanisms

<u>Goal:</u> limit traffic to not exceed declared parameters Three common-used criteria:

- (Long term) Average Rate: how many pkts can be sent per unit time (in the long run)
 - crucial question what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 9000 ppm peak rate
- (Max.) Burst Size: max. number of pkts sent consecutively (with no intervening idle)

CS 640

Policing Mechanisms

Token Bucket: limit input to specified Burst Size and Average Rate.

**Tokens/sec | Ducket holds up to b tokens | Ducket holds up tokens | Ducket holds

- · bucket can hold b tokens
- tokens generated at rate r token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to (rt + b).

Policing Mechanisms

• token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., *QoS guarantee*!

IETF Integrated Services

- architecture for providing QOS guarantees in IP networks for individual application sessions
- resource reservation: routers maintain state info (a la VC) of allocated resources, QoS req's
- admit/deny new call setup requests:

Question: can newly arriving flow be admitted with performance guarantees while not violated QoS guarantees made to already admitted flows?

CS 640

Intserv: QoS guarantee scenario • Resource reservation - call setup, signaling (RSVP) - traffic, QoS declaration - per-call admission control - QoS-sensitive scheduling (e.g., WFQ) (cs 640)

Call Admission

Arriving session must:

- · declare its QoS requirement
 - R-spec: defines the QoS being requested
- · characterize traffic it will send into network
 - T-spec: defines traffic characteristics
- signaling protocol: needed to carry R-spec and T-spec to routers (where reservation is required)
 - RSVP

CS 640

Intserv QoS: Service models [rfc2211, rfc 2212]

Guaranteed service:

- worst case traffic arrival: leaky-bucket-policed source
- simple (mathematically provable) bound on delay [Parekh 1992, Cruz 1988]

Controlled load service:

 "a quality of service closely approximating the QoS that same flow would receive from an unloaded network element."

IETF Differentiated Services

Concerns with Intserv:

- Scalability: signaling, maintaining per-flow router state difficult with large number of flows
- Flexible Service Models: Intserv has only two classes. Also want "qualitative" service classes
 - "behaves like a wire"
 - relative service distinction: Platinum, Gold, Silver

Diffserv approach:

- Simple functions in network core, relatively complex functions at edge routers (or hosts)
- Don't define define service classes, provide functional components to build service classes

Edge-router Packet Marking • profile: pre-negotiated rate A, bucket size B • packet marking at edge based on per-flow profile Rate A B User packets Possible usage of marking: • class-based marking: packets of different classes marked differently • intra-class marking: conforming portion of flow marked differently than non-conforming one

Classification and Conditioning

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
- 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive
- 2 bits are currently unused

CS 640

Classification and Conditioning

may be desirable to limit traffic injection rate of some class:

- user declares traffic profile (eg, rate, burst size)
- · traffic metered, shaped if non-conforming

Forwarding (PHB)

- PHB result in a different observable (measurable) forwarding performance behavior
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior
- Examples:
 - Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - Class A packets leave first before packets from class B

Forwarding (PHB)

PHBs being developed:

- Expedited Forwarding: pkt departure rate of a class equals or exceeds specified rate
 - logical link with a minimum guaranteed rate
- Assured Forwarding: 4 classes of traffic
 - each guaranteed minimum amount of bandwidth
 - each with three drop preference partitions

CS 640

Multimedia Networking: Summary

- multimedia applications and requirements
- making the best of today's best effort service
- scheduling and policing mechanisms
- next generation Internet: Intserv, RSVP, Diffserv

-		
-		