
CS 640 project, Fall 2005, Milestone 1

Cristian Estan

September 15, 2005

1 Introduction

For the first milestone (September 22), you will
have to do two things: fix a bug in the existing
Netpy code, and describe the interfaces between
modules that can support the functionality in
the revised feature list. Both things require that
you get some level of understanding of how the
current Netpy code works and how it is struc-
tured. For the bugfixes you should submit patch
files with your changes to the code (one patch
per bug fixed) and where applicable, a short ex-
planation. After milestone 1 we will switch to
using CVS and a real bugtracker. For the inter-
faces between modules you should submit one
text file. In addition each team should submit
a “contributions.txt” file that gives a short sum-
mary of what each team member worked on.

2 Bugs to fix for milestone 1

2.1 Database team

2.1.1 Deterministic sampling

The database module may perform some sam-
pling of the flow record data after it is read out
of the database and before it is handed over to
the analysis engine. If the analysis engine uses
the DNS plugin it can trigger some expensive
DNS lookups for every IP address in the data

it receives. Thus it is important that if the
same query is run twice the database returns ex-
actly the same flow records so that the results
of the lookups can be found in the DNS cache.
Of course this does not apply if the database
was updated between the queries. Check to see
whether this sampling performed after reading
the database is deterministic and if not, make it
deterministic.

2.1.2 Flow counts

Flow counts are partially implemented. Try to
enable the flow count functionality. If this proves
too hard write a few sentences on where you got
stuck. Note: this will require you to create a new
database. Use raw flow records from the netpy-
demo/sampleinput directory. Make sure to set
the NETPY DB environment variable to the direc-
tory you want to create the new database in.

2.2 Analysis team

Start up the demo, switch to bidimensional anal-
ysis, set the threshold to 10 in the view menu,
and hit refresh. Hover your mouse over the vari-
ous panes in the output, and details on the traf-
fic of the corresponding traffic group will appear
at the bottom of the window. The traffic vol-
umes indicated there are inconsistent with the
darkness of the panes which should convey the

1

same information. For example the fourth pane
from the top row is grey (which means it must
have some traffic), but the bottom of the win-
dow indicates it has no traffic. Find out where
the problem is and fix it.

2.3 Plugin team

There are no plugins in the current codebase, so
for the bug fixing part you will work on the user
interface.

2.3.1 Layout

The labels for the horizontal side of the re-
port overlap for bidimensional reports, especially
when you use small thresholds. However, when
the unidimensional report is displayed horizon-
tally it does not have this problem. Fix the lay-
out for the bidimensional report.

2.3.2 Preferences

Write a short report on what the various options
in the preferences dialog do. Explain which work
and which don’t, and fix all the typos in the
names of the options.

3 Interface specifications

The database and analysis teams will have to
specify what files they own in the current source
tree. For all interactions between the code of
your team and the code of other teams, give a
detailed description of function semantics (in-
cluding arguments) and shared data structures.
The interfaces should suffice to support all the
features in the revised feature list. Even though
we do not have a user interface team, describe
the interface between your module and theirs

too. For this milestone you need not coordinate
between teams to make sure that both teams
sharing an interface have a consistent view
of how it works. That will happen for the
next milestone. Wherever existing interaction
between modules is adequate, just describe
the existing interface instead of coming up
with a new one that would force you to write
a lot of code. The plugin team should also
give the non-standard interfaces to the DNS
plugin and the “prefix owner” plugin that
one would need to facilitate the implementa-
tion of the “address and port helper” feature
described in Tuesday’s document in section
3.3.1. The interface partial example.txt

file from the class directory
/p/course/cs640-estan/public gives an
example for the level of detail you have to get
to when specifying a function in an interface.
You need not use this specific function in your
interface between the plugin and the analysis
module. You can use different notation and
naming conventions. The important thing is
that your interfaces easy to understand and
most importantly unambiguous.

2

Feature, number of section Importance Amount of work for each team
describing it Database Analysis Plugin

Timestamps in database 2.5 High Medium None None

Sampled NetFlow 3.5.1 High Small None None

Faster analysis engine 3.1.1 High None Large None

Plug-in hierarchy support 2.1.2 High Small Large None

Strengthening filters 2.2.1 High Medium None* None

User defined categories 2.1.3 High None None Large

DNS IP hierarchy 2.1.4 High None None Large

Packaging 3.4 High Medium

Faster database 3.1.2 Medium Large None None

Flow counts 2.4.1 Medium Medium None* None

SYN counts 2.4.2 Medium Medium None* None

Accuracy feedback 3.3.3 Medium Medium None* None

Automatic time selection 3.2.1 Medium Medium None* None

Comparison reports 2.3 Medium None Large None

Dest. port hierarchy 2.1.1 Medium None Small None

Manual prefix hierarchy 2.1.5 Medium None None Medium

Accuracy selection 3.3.4 Low Medium None* None

Filter extensions 2.2.2 Low Medium None Small

Packet header traces 3.5.2 Low Small None None

Database size management 3.6.1 Low Small None Small

Address and port helper 3.3.1 Low Medium

Navigation shortcuts 3.2.2 Low Medium

Filter drill-down work 3.2.3 Low Medium

Table 1: Shortened and re-prioritized feature table. Note how the scope of 2.1.5 has been reduced:
interaction with the WHOIS servers is no longer required, the user will add the data about prefix
ownership manually to a text file. The amount of work for 3.3.1 decreased because it can now rely
on higher priority features: 2.1.4 and 2.1.5.

2

/p/course/cs640-estan/public/interface_partial_example.txt Thu Sep 15 12:21:05 2005 1

--
Example for specifying a function in an interface
--

The get_hierarchy_position is part of the interface between the
analysis engine and a plugin. The analysis engine calls this function
before performing the hierarchical heavy hitter analysis. Through this
function the plugin maps a flow identifier to the internal encoding of
its position in the hierarchy implemented by the plugin. This function
must be implemented by every plugin, and the analysis module will get
a function pointer to it during initialization.

void get_hierarchy_position(const struct flow_identifier* flowID_p,
 int instanceID,
 struct internal_encoding* result_p);

The flowID_p argument to this function is a pointer to the structure
that holds the identifier of the flow.

struct flow_identifier{
 unsigned int src_IP;
 unsigned int dest_IP;
 unsigned short int src_port;
 unsigned short int dest_port;
 unsigned char proto;
};

The instanceID argument has the instance pointer which the analysis
module obtains during initialization. The type of data it points to
depends on the plugin. The plugin uses this pointer to differentiate
the operation of the get_hierarchy_position() function for various
instances of the plugin. For example one instance would map the source
address to DNS names while the other would map the destination
address.

The result_p argument holds the internal encoding of the position of
the flow in the hierarchy implemented by the plugin. The length field
gives the number of characters used by the actual hierarchy position
encoding. The analysis module must make a copy of those bytes because
the validity of the data pointed to by the hierarchy_position field is
not guaranteed across function calls.

struct internal_encoding{
 unsigned char* hierarchy_position;
 unsigned short int length;
};

--
Example for describing a data structure used across an interface
--

The internal_encoding structure stores the internal encoding of the
position of the a flow in the hierarchy implemented by the
plugin. This structure is used by the analysis engine for all
plugins. The length field gives the number of characters used by the
actual internal encoding of the hierarchy position pointed to by the
hierarchy_position field. This internal encoding of a position in the
hierarchy is an explicit list of more and more specific groups (nodes
in the tree representation of the hierarchy).

struct internal_encoding{
 unsigned char* hierarchy_position;
 unsigned short int length;
};

/p/course/cs640-estan/public/interface_partial_example.txt Thu Sep 15 12:21:05 2005 2

The bytes pointed to by hierarchy_position have a list of groups the
traffic is part of starting with the most general and ending with the
most specific. The group names can have any number of bytes and can
contain all characters except the special separator character. Each
module declares its separator character at initialization. The "*"
group of all traffic (the root of the tree representation of the
hierarchy) includes all flows and as such it is conceptually at the
beginning of all lists of groups, but it is redundant so it should not
be included. For example the DNS plugin can declare "." as its
separator character and encode "www.cs.wisc.edu" as
{hierarchy_position:"edu.wisc.cs.www", length:15}. The
get_hierarchy_position function should map a flow identifier down to
the most specific group it is part of, but the hierarchical heavy
hitter analysis can produce encodings that end in groups for which
there are more specific groups. These are represented with a trailing
separator. For example {hierarchy_position:"edu.wisc.cs.", length:12}
refers to various computers within the cs.wisc.edu domain while
{hierarchy_position:"edu.wisc.cs", length:11} refers to the one
computer called cs.wisc.edu.

