CS 640 project for Fall 2005

Cristian Estan

September 13, 2005

1 Introduction

As project, you will extend the application de-
veloped last Fall by CS 640 students: Wisconsin
Netpy. It is an Internet traffic analysis and vi-
sualization application using NetFlow data col-
lected by routers. This description of the project
assumes that there will be four teams work-
ing on different parts of the project. Currently
Netpy is divided into three main components:
the database, the analysis engine, and the user
interface (includes the GUI and the console).
Three of the teams will take ownership of these
components and the fourth one will be working
on extensions to the traffic analysis functionality
that will be implemented as plugins to the main
application. Table 1 summarizes the features
to implement, sorted by priority. How many of
these features will get implemented depends on
how many of you will work on the project. The
lower priority features are more likely to be cut.
I hope that you will come up with some ideas of
features you would like to add.

The bulk of the work on this project will be
to add new features to the application. These
features can be grouped into two broad cate-
gories: features that allow the user to perform
more powerful analyses of the traffic (presented
in Section 2), and features that improve the us-
ability of the software (presented in Section 3).

1.1 Correctness of results

One “feature” not explicitly discussed in the fol-
lowing sections is the maturity of your code. You
are expected to make a reasonable effort to en-
sure that there are no serious bugs in your code.
The most important thing is to ensure that the
results of the analyses are correct. If faced with
a choice between implementing one more feature
and checking the correctness of existing code, go
for the correctness.

2 More powerful analysis

Roughly half of your work will be on features
that allow the user to perform analyses that give
him more useful details on the composition of the
traffic mix. These should facilitate a better un-
derstanding of the traffic mix and lead to better
decisions on the network administrator’s part.

2.1 New hierarchies for analysis

Netpy’s analysis is built around the concept of
“dimensions of analysis” such as source address,
destination address, or application. For each
dimension, the simplest analysis just maps the
traffic into disjoint groups (e.g. grouping the
traffic by the source address of the packets) and
reports those above a threshold (by default 5% of

Feature, number of section Importance Amount of work for each team
describing it Database | Analysis | Interface | Plugin
Faster database 3.1.2 High Large None None None
Timestamps in database 2.5 High Medium None None None
Sampled NetFlow 3.5.1 High Small None None None
Faster analysis engine 3.1.1 High None Large None None
Plug-in hierarchy support 2.1.2 High Small Large Large None
Comparison reports 2.3 High None Large Medium | None
Address and port helper 3.3.1 High None None Large None
Strengthening filters 2.2.1 High Small None* | Medium | None
User defined categories 2.1.3 High None None None Large
DNS IP hierarchy 2.1.4 High None None None Large
Packaging 3.4 High Medium

Flow counts 2.4.1 Medium Medium None* Small None
SYN counts 2.4.2 Medium Medium None* Small None
Accuracy feedback 3.3.3 Medium Small None* Small None
Accuracy selection 3.3.4 Medium Small None* Small None
Automatic time selection 3.2.1 Medium Small None* Small None
Dest. port hierarchy 2.1.1 Medium None Small None* None
Navigation shortcuts 3.2.2 Medium None None Medium | None
Consistent metaphors 3.3.2 Medium None None Medium | None
Filter drill-down work 3.2.3 Medium None None Medium | None
Precomputation 3.1.3 Medium Small None Medium | None
WHOIS IP hierarchy 2.1.5 Medium None None None Large
Undo for additions to db. 3.6.2 Low Large None None None
Packet header traces 3.5.2 Low Small None None None
Database size management 3.6.1 Low Small None None Small
Multiview navigation 3.2.4 Low None None Large None
Better plots 3.3.5 Low None None Medium | None
Filter extensions 2.2.2 Low Small None Medium | Small
BGP IP hierarchy 2.1.6 Low None None None Large

Table 1: Features are sorted by importance and within importance by which group would need to
do most work on a given feature. The last 4 columns represent an estimate of the amount of work
each group would have to do (None* means less than 5 lines of code). All the planning of interfaces
has to accommodate all the features, but implementation should be incremental: we will cut the
features there is no time for. Any team can do the packaging, we will decide later.

the traffic). Netpy associates with each dimen-
sion hierarchies that map the traffic into smaller
and smaller groups. At the root of each hierar-
chy is a group that contains all traffic.

Adding more dimensions of analysis (and thus
more hierarchies) to Netpy gives the user the
power to see different types of details about the
traffic mix. Netpy currently uses three hierar-
chies. You will add up to five new hierarchies to
Netpy, one directly, and the rest as “plugins” the
user can decide to use or not. All the types of
analyses supported by Netpy (time series, uni-
dimensional, bidimensional, and the comparison
reports described in Section 2.3) should work
with all of these hierarchies (or arbitrary pairs
of hierarchies for bidimensional reports).

2.1.1 Destination port based hierarchy

The existing application hierarchy can detect in-
dividual source ports sending much traffic, but
not destination ports receiving a lot of traffic.
The reason for this is that traffic is grouped by
source port at higher levels of the hierarchy. To
correct this shortcoming, you should implement
a second application hierarchy in which you re-
verse the role of source and destination ports:
destination ports will influence the higher levels
of the hierarchy and source ports only the last.

2.1.2 Support for plug-in hierarchies

One of the main additions to Netpy will be the
support for extensions via plugin traffic hierar-
chies. You will have to design and implement
an interface Netpy will expose to these plugins.
The fourth team (a.k.a. the plugin team) will
use this interface extensively. The other teams
will have to implement the functions exposed by
this interface.

The addition of plugins (and their options)
will be controlled by a configuration file on the
Netpy server. The details of this file should be
visible from the user interface, but the user in-
terface should not support changes to this file.
Each plugin will have multiple instances (e.g. we
can group both the source and destination ad-
dresses based on DNS names). Each plugin in-
stance can have up to one configuration file (e.g.
a list of user defined traffic categories) and local
data (e.g. alocal database of IP address to DNS
name mappings). Each plugin will interface with
all three components of Netpy.

Plugins should be able to register some type
of callback function with the database so that
they can update their local data when new flow
records are added to the database. For exam-
ple the DNS plugin could perform reverse DNS
lookups to find the names of new IP addresses
that are added to the database. Also plug-
ins should provide a function that allows the
database management code to ask them to re-
move old local data. For example mappings for
IP addresses that have been removed from the
database (or mappings that expired) should be
removed when the database management com-
ponent is activated.

The analysis engine will still perform the hier-
archical heavy hitter analyses on the plugin hi-
erarchies. The plugins need to implement two
functions to assist the analysis engine: one map-
ping flows to groups in the hierarchy, and an-
other one for sorting groups. The mapping func-
tion will take as an input a flow record iden-
tifier (source and destination IP address and
port, plus protocol number) and it will map
it to a list of groups the flow belongs to from
most general (all traffic) to most specific. These
lists will be the internal encoding of where the
flow is within the hierarchy. The analysis en-

gine will use this internal encoding to perform
the analysis. The number of groups flows map
to does not have to be the same for all flows.
For example www.google.com would map to the
following list of 4 groups: all traffic, traffic
from .com addresses, traffic from google.com ad-
dresses and traffic from www.google.com. But
www.cs.wisc.edu would map to a list of five. The
second function the plugin has to provide would
receive a list of such encodings present in the re-
sult of a query and sort them according to what-
ever order makes sense for the semantics of the
hierarchy. This order will be used when display-
ing the results.

The plugin will have to provide two functions
to the user interface. The first function would
map the internal encoding to a human readable
string. The second function would map the in-
ternal encoding to a human readable string of
limited length (say 15 characters).

2.1.3 User defined categories

A first plugin would allow the users to explic-
itly define the categories of traffic that define
the hierarchy used for analysis. The configura-
tion file for this type of plugin will contain a
list of ACL-like rules (same syntax as the fil-
ter rules of Netpy with the extensions from sec-
tion 2.2.1), each mapping the matching traffic
to a user defined category. Each flow belongs
to the category that goes with the first rule it
matches in the categories file. These categories
can be hierarchical: a rule can map the traffic to
the “email” category, other rules can map traf-
fic to the “mail/SMTP” or “mail/IMAP” sub-
categories. This plugin will need no local data
to perform its function.

2.1.4 DNS based IP address hierarchy

The DNS based IP address hierarchy will use re-
verse DNS lookup to map IP addresses in the
database to DNS names. Individual lines in the
analyses will report traffic sent to (or received
from) IP addresses mapping to a DNS name, or
many DNS names within the same domain. To
differentiate between a single name and domains
containing multiple names, domains represent-
ing multiple DNS names should be represented
with a leading “*”. For example “*.cs.wisc.edu”
would represent various computers in the
cs.wisc.edu domain (e.g. www.cs.wisc.edu,
mail.cs.wisc.edu, ogre.cs.wisc.edu, etc.) as op-
posed to “cs.wisc.edu” which represents a com-
puter called cs.wisc.edu. You should build a
local cache of IP address to DNS name map-
pings. The cache should also store negative re-
sults (lookup unsuccessful). DNS mappings of
IP addresses can change with time. Therefore,
if an IP address has an old entry in the cache
and it appears in the traffic mix again, it should
be looked up again. The time after which an
address is looked up again should be user con-
figurable and it should default to one week. The
user should be able to instruct the plugin to
perform DNS lookups only when data is added
to the database, only when the analysis engine
queries the database, or never (in this case only
cached mappings are used). Also the user should
be able to rate limit the lookups to avoid gener-
ating large spikes in DNS traffic.

2.1.5 WHOIS based address hierarchy

Some prefixes can be meaningfully mapped to
various organizations in charge of them. Often
an organization has multiple non-contiguous pre-
fixes. The relationship between organizations

is often hierarchical: the department received
its address ranges from the campus, the cam-
pus from the ISP, the ISP from a registrar (say
ARIN). A simplified version of this plugin can
allow the user to enter mappings from prefixes
to organizations in a text file local to the plu-
gin. A full version should use the whois service
to query the registrars’ databases. These plugins
should offer the same type of control as the DNS
plugin over when the lookups are performed and
what the maximum rate for lookups is. Note
that when the whois database (or the configura-
tion file) contains multiple prefixes matching an
IP address, the most specific (longest) matching
prefix should be used and the others ignored.

2.1.6 BGP based IP address hierarchy

BGP routing tables can be used to map prefixes
to autonomous system numbers. This plugin
would use BGP routing tables as input instead
of WHOIS data. In many other respects it would
be similar.

2.2 Stronger filters

It is essential for incident response that the net-
work administrators be able to “drill-down” into
a part of the traffic mix of interest to them.
Netpy’s filters are the tool that allows them to
do that. Extending the semantics of these filters
increases their expressive power.

2.2.1 Using existing filter fields

Currently filter rules look at 5 fields source ad-
dress, source port, destination address, destina-
tion port and protocol to decide whether the rule
matches a given flow record or not. For the two
IP addresses, the rule can specify prefixes they
have to be within, for the port numbers ranges,

and for the protocol an individual value it has
to match. The rule can also ignore any of the
fields. By extending what rules can do with the
individual fields, we can enhance their expres-
siveness. Adding the “not” operator to address
and port fields will allow the user to express rules
that match addresses not in the given prefix and
ports not in the given range. Adding a global
negation operator to the rule will “reverse” its
semantics: the rule will match the flows it would
have ignored and ignore the ones it would have
matched without the global negation. Also for
IP addresses the user should be able to specify
IP address ranges in addition to using prefixes.

2.2.2 Extensions to new hierarchies

Filters can be further strengthened by adding
additional methods of filtering to the rules. One
possibility is to allow the use of the hierarchies
implemented by plugins for filtering (this would
require extending the API for plugins). This
would allow the user to select with a single rule
the flows mapping to one of the user defined
categories, those whose source addresses are in
a given DNS domain, or whose destination ad-
dresses map to a given ISP (based on whois
data). There is another useful extension that
doesn’t directly correspond to any of the plug-
ins discussed here: selecting flows whose source
or destination IP address is in an explicitly enu-
merated set. An “IP set” would consist of a file
with individual IP addresses, prefixes, or address
ranges generated by a third party application
and used by Netpy for filtering. Using such an
IP set would allow us to focus the analysis for ex-
ample on the computers infected with a certain
worm if a third party application could provide
us with a list of the IP addresses of computers
(suspected to be) infected.

Incoming traffic:
190 Gbytes
Outgoing traffic:
130 Gbytes @
=
o
o _
o)
g X
§ =]
o| SL
&
8
4
Shades e
*Dark much traffic e
. : ——
«Light little traffic 185.9.167.0/24 |
| 1
(both relative to area) 15.4.6.0/24 185.9.0.0/16
| |
Destination address
1940016 [mun
w
o
=
®
2 19.4.16.0/20
2 :
;
198.241.64.0 M8 [-

Figure 1: Mock-ups of comparison reports for the bidimensional and time series case.

2.3 Comparison reports

An important feature only partially imple-
mented by Netpy is comparison reports. These
allow the user to compare any two portions of
the traffic mix: one link’s traffic against the
other’s, today’s traffic against yesterday’s (or
last week’s), the traffic of one prefix against the
traffic of the other, the distribution of source ad-
dresses when we measure the traffic in bytes ver-
sus when we measure it in packets, etc. Compar-
ison reports apply to all three types of reports
supported by Netpy: unidimensional reports,
bidimensional reports and time series plots. The
basic idea is that we take two “data sets” and we
analyze them together with respect to the same
dimension. It is easiest to do this for time series
plots: we first perform the hierarchical heavy
hitter analysis on the sum of the two datasets
to obtain the groups along the analysis dimen-
sion to divide the traffic into, next we just plot
the amount of traffic in each group for the first
data set above the x axis and for the second
data set below the x axis. For unidimensional
and bidimensional reports we generate a report
for the sum of the data sets and use color to
distinguish between the contributions of the two
sets. If we use red for the first set and blue for
the second, groups where both sets contribute
equally would be represented with a neutral gray
(the darkness of this gray would indicate traf-
fic volume for bidimensional reports), the groups
where the first data set dominates would be red-
dish (the stronger the dominance the cleaner the
red), and groups where the second data set dom-
inates would be blueish.

There are two important “modifiers” to how
data sets are used that are important for com-
parison reports. By default comparison reports
should normalize the data: the traffic of the two

data sets must be scaled so that the visual repre-
sentation of the total traffic of the two data sets
occupies the same length on the screen. This is
compulsory when one compares different units:
traffic measured in bytes versus traffic measured
in packets. When the traffic is measured in the
same unit for both sets, the user should be able
to turn normalization off. The user should also
be able to “toggle” the direction of the traffic in
the second set: source addresses become destina-
tion addresses and source ports become destina-
tion ports (and vice versa). This is useful when
comparing the two directions of the same link.
For example the incoming direction of the link
to the Internet will have external addresses as
source addresses and internal addresses as desti-
nation addresses, whereas the opposite direction
of traffic will have source addresses from the in-
ternal network and destination addresses from
the rest of the world. By toggling the sources
and destinatins for outgoing direction, a com-
parison report on the destination address would
show the distribution of the traffic among inter-
nal networks for the two directions of the link.

2.4 Different “units” of measurement

Currently Netpy can measure the traffic in ei-
ther bytes or packets. Measuring the number of
connections is a better way to reveal network
scans and some types of denial of service at-
tacks. There are two ways to count the num-
ber of connections: by counting the number of
SYN packets we can get an accurate count of the
number of TCP connections started, by count-
ing distinct flow identifiers in the traffic (count-
ing active flows) we can capture UDP flows and
ICMP scans as well.

2.4.1 Active flow counts

Counting active flows has the advantage of also
capturing UDP and ICMP scans. It has the dis-
advantage that active flow counts cannot be re-
covered accurately if we use as input sampled
data such as sampled NetFlow. The active flow
count for a traffic group during a time interval is
defined as the number of distinct flow identifiers
in the traffic from that time bin.

To preserve active flow counts the database
must use a different sampling method than the
one used for packets and bytes. This is already
partially implemented in Netpy.

2.4.2 SYN based flow counts

SYN based flow counts rely on the fact that the
first packet of each TCP connection has the SYN
flag set. This is true for both directions (from
client to server and from server to client) as long
as there are no losses and retransmissions (in
that case there can be more packets with the
SYN flag set). The flow records collected by
routers keep a flag that is set if at least one of the
packets counted against the record had the SYN
flag set. It is easy to undo the effects of sam-
pling on SYN packet estimates: one just needs
to multiply the number of records with the SYN
flag set with the inverse of the sampling rate.
To recover SYN based flow counts, you need to
extend the database to also store the SYN flag
information.

2.5 Adding database timestamps

Currently the database does not keep explicit
timestamps. It stores traffic information for sep-
arate 5 minute time bins in separate files, it is
able to provide reports at granularity of 5 min-
utes or more. By also storing some crude times-

tamps (say around one byte in size) for when a
given flow started and ended within the 5 minute
time bin, we will be able to perform analyses that
look at the traffic at granularity lower than the
5 minute bin size. This would come at the cost
of increased flow record sizes (and extra code to
implement it).

3 Better usability

Stronger analysis will increase the power of
Netpy, but judging from my past experience,
its success with network administrators depends
more on improving its usability. This section
presents the ways in which new features can im-
prove the usability of the application.

3.1 Speed improvements

The performance of the system is important.
Quick results can be the key to a positive user
experience (assuming they are correct). The way
to find performance problems is through profil-
ing. You should insert basic profiling hooks into
your code so that you can measure how long a
certain request took, and within that, how long
it took to read data out of the database and how
long it took to run the analysis algorithms, etc.
A relatively easy way to improve performance
is through caching. Netpy already uses caching
of analysis results extensively. You can extend
the existing caching mechanisms as you see fit.
Netpy also uses sampling to reduce the number
of flow records the analysis engine works with
when the database offers too many of them.

3.1.1 Faster analysis engine

The current performance bottleneck for queries
over short timescales is the analysis engine. The

reason are the inefficient python algorithms im-
plementing the hierarchical heavy hitter analy-
sis. You should reimplement the analysis in C
and use more efficient algorithms wherever pos-
sible. You should be able to obtain at least a
factor of 10 speedup.

3.1.2 Faster database

For queries that involve reading much data from
the database, disk reads can become a perfor-
mance bottleneck. There are some genuinely
hard queries that we cannot do much to improve:
those that filter out a very small subset of a very
large traffic volume. For these we need to store
a large database with little or no sampling and
read it all in. But for queries that work with
large portions of the traffic we shouldn’t read in
a large database and later apply sampling to re-
duce the number of flow records we hand to the
analysis engine. A more aggressively sampled
database would be better.

To accommodate both types of queries we can
use a database structure with multiple levels of
sampling: for each 5 minute time bin keep an ag-
gressively sampled version of the database and
progressively larger versions until we reach the
disk usage limit specified by the user. When
the user specifies a query, the database module
would read the smallest version of the database
and if it provides accurate enough results!, the
resulting flow records are delivered to the analy-
sis engine. If the smallest version of the database
is too inaccurate, the database module will read
larger and larger versions that use less aggres-
sive sampling. For example the smallest ver-
sion could use a sampling rate so aggressive that

"We will discuss at office hours how you determine
whether a certain sampled summary of the data is accu-
rate enough or not.

its size would be around 10,000 records, the
next larger version could contain the next 30,000
records, the next larger the next 120,000 records,
the next one 480,000 records, etc.

For queries that cover a large time period, say
a week, the database module would have to read
many files (2,016 for a week) corresponding to
the 5 minute bins within the time period of in-
terest. This might provide too much detail and
involve significant costs in terms of disk trans-
fers. To avoid this problem the database file
hierarchy should store summaries of the traf-
fic using coarser bin sizes too: say one hour
bins, four hour bins, one day bins, and one week
bins, all keeping summaries of the traffic they
cover using around 10,000 records. You need not
store progressively larger versions of the data for
these larger time bins because to get better accu-
racy the database module can just read the next
smaller bin size which provides more detail.

3.1.3 Precomputation

Netpy has various caches. Omne can speedup
analyses by computing the results of anticipated
queries in advance when the data is added to the
database. This way the results will be cached
and when the user asks for the query she will
get a quick (and correct) reply. You should find
a convenient way for the user to specify what
analyses to precompute.

3.2 Easier traffic mix exploration

One of the important features of Netpy is that it
allows the user to explore the traffic mix asking
repeated queries until he finds the right combi-
nation of filters and other parameters that result
in conclusive answers to the problem he is inter-
ested in.

3.2.1 Automatic selection of most recent
time window

For the time interval the analysis is performed
on, the user should be able to select “the last
hour”, “the last day”, and so on without having
to explicitly enter the times. This requires inter-
action with the database module which knows
what the most recent data is. The user interface
should still convey what the exact times are for
the report, but the user should not have to enter
them explicitly. One of these settings should be
the default when the user interface starts up.

3.2.2 Shortcuts in the GUI

You could add to the user interface buttons for
common actions: moving to the next/previous
hour/day/week, zooming in to a specific hour of
the day the analysis is on, or zooming out to
the surrounding week. These would add to the
already popular “back” and “forward” buttons.
Feel free to add other navigation buttons you
find useful, but don’t clutter the screen.

3.2.3 Better integration of filters and
GUI drill-down

Currently clicks on various elements in the re-
ports change the first rule in the filter. If there
is a single rule, this is the correct semantics, but
if there are multiple rules, it is not. It should be
relatively easy to fix with the current types of
rules. You should think through the issues that
arise once we extend the filters as proposed in
sections 2.2.1 and 2.2.2.

3.2.4 Multiview navigation

Currently Netpy allows separate windows to
show different views of the data and perform dif-

ferent analyses. What each window shows is se-
lected separately. The new multiview windows
would have multiple views, but a common inter-
face for selecting what gets displayed (the time
interval, the filters and the links). The thresh-
old should also be a parameter that can be set
for each window. The user should be able to
select separately what type of report each view
within the window shows and whether it counts
the result in bytes, packets or flows. The second
dataset for comparison reports should also be se-
lectable separately for each view. You should im-
plement two multiview layouts: one view that al-
lows the user to select any three unidimensional
graphical reports (displayed in a row), and one
that allows the user to select any six reports (two
rows of three reports each). If you implement
other multiview layouts that make sense those
will count as extra credit.

3.3 Conveying information better

Even without changing the analyses Netpy is ca-
pable of performing, the user interface can be
modified to convey more information, or to make
it easier to understand.

3.3.1 Address, prefix and port helper

On mouse-over, display the DNS name of the IP
address (reverse lookup), or the prefix it belongs
to based on a list of prefix names provided by the
user. Prefixes in the GUI can also be mapped to
these user defined prefixes. The user should also
be able to associate application names with port
numbers the same way. The user should have the
option of disabling DNS lookups. These features
are related to the plugins from sections 2.1.4 and
2.1.5, but they are not the same.

10

3.3.2 Consistent user metaphors

There are many metaphors you can use to convey
information to the user. For example whenever
you measure the traffic in bytes you display one
icon, when you measure it in packets another
one, for flows another one, etc. Or you could use
different colors for these cases. Another idea is
related to the information that is displayed at
the bottom of the window whenever you move
the mouse over a “pane” representing a part of
the traffic. You could also highlight the pane
by drawing a contour around it. This is not as
gratuitous as it sounds because sometimes the
information refers to say a prefix encompassing
multiple panes. This is a very open-ended thing.
Let you imagination run wild and come up with
the coolest metaphors you can think of. The
important thing is that it should be intuitively
clear to most users what you want to convey (and
it shouldn’t be annoying for the few who don’t
get it).

3.3.3 Conveying accuracy of results

The database module can estimate the size of the
sampling error affecting the output of a report.
This information should be conveyed (possibly
in a simplified fashion) to the user. For example
you could use the ratio between the standard
deviation of the estimate of the total selected
traffic and the actual value.

3.3.4 Selecting target accuracy

The user should be able to specify a desired level
of accuracy for the results. This option should
be available through the graphical user interface
and the console. If the user-specified limits for
the database size force you to do some sampling,

11

it might be impossible to provide results as ac-
curate as the user wants. But when you have
a choice of digging deeper into the database or
not, the user’s selection can guide the choice the
database module makes.

3.3.5 Better plots

The time series plots could be made easier to
read. Take a look at Tobias Oetiker’s RRDtool
for inspiration.

3.4 Packaging

Packaging the software is incredibly important.
If prospective users have to spend hours to down-
load and compile the various graphical libraries
required, they will just give up irrespective of
how cool an application you put together. It is
important package the application as “RPM”s
or “debian packages” for Linux, and maybe with
the appropriate tools for Windows (or even Mac
if you want to). There should be two separate
packages: one containing the database module,
the analysis engine and the console, and another
one with the graphical user interface. Users
might choose to run the first package on a Linux
server and the GUI on a Windows laptop.

3.5 Various types of input

Currently Netpy accepts NetFlow data as input.

3.5.1 Handling sampled NetFlow input

Netpy also accepts sampled NetFlow because it
has the same format. But you should make the
database aware that it is consuming sampled
NetFlow so that in the results it can compen-
sate for the sampling that has already happened
by the time the flow records reach Netpy.

3.5.2 Reading packet header traces

Some people collect packet header traces with
general purpose computers. There are third
party programs that turn these into flow records
of the type routers generate. Integrate them
with Netpy so that it can consume packet header
traces.

3.6 Better database management
3.6.1 Database size management

As part of a real traffic monitoring infrastruc-
ture, your application will likely have to process
and store gigabytes or terabytes of data. Con-
trolling the size of the database becomes very
important. Currently the user can specify in a
configuration file how much data per hour of traf-
fic the database should hold for each link. Old
data can be deleted from the command line. You
should implement an additional command that
would allow the user to shrink old data (by de-
creasing the sampling rates) instead of deleting
it. For example decreasing old data’s disk us-
age from say 20 megabytes per hour to say 1
megabyte per hour, would still allow the user to
run analyses on old data, but the results would
be less accurate due to the more aggressive sam-

pling.

3.6.2 Undoing additions to the database

What happens if the user accidentally adds a
batch of flow records twice to the database? Be-
cause of the sampling that the preprocessing
phase does, it is impossible to cleanly remove
data from the database once it has been added.
Therefore it is especially important to help the
user avoid the unpleasant situation when the
same NetFlow file is added twice to the database

12

due to some bug in their script. For extra credit
you can implement two features providing assis-
tance with this situation. Your application can
keep a log of the names of the files that have been
added to the database and exit with an error
message if the same file is added twice. An even
stronger feature is to also log the first say 100
records from each file and check when new data
arrives. This would allow you to refuse adding
the same data twice even if the file has been re-
named in the meantime. You should provide a
command line option that would allow the user
to override both of these features.

With extra tagging you could undo additions,
but it is impossible to undo the effects of the ex-
tra sampling they cause. Explore this direction.

