

Research Goal

- (BCE) markers (Figure 6).

Figure 2: Hybrid decomposition: cell chares (orange) and compute chares (pink) (left). Particle grouped by cell, showing the interaction radius (right).

Distributed Memory Fluid-Solid Interaction Simulations via Chrono::HPC

Felipe Gutierrez Barragan, Arman Pazouki, and Dan Negrut Department of Mechanical Engineering, University of Wisconsin-Madison

Experiments and Results

500 100 300 Number of Processors

Figure 5: Speeups calculated with respect to an 8 processors run. *Left*: Scaling analysis from 8-504 processors. *Right* GPU speedups.

Linear Scaling
34524 SPH Markers
115812 SPH Markers
1356804 SPH Markers

GPU Speedup		
# Markers	Speedup	
34,524	95x	
115,812	140x	
1,356,804	135x	
9,548,644	0.0.M	

Computational Resources

- core processor
- Tesla K40 \bullet
- codes.

bodies..

[1] <u>http://charmplusplus.org</u>

[2] L. Kale, et al. "Charm++ for productivity and performance". PPL Technical Report, 2011.

[3] A. Pazouki, et al. "A high performance computing approach to the simulation of fully resolved coupled fluid-multibody dynamics systems with free surfaces". Archive of Mechanical Engineering, 2014

- Supercomputing Applications.

• *Euler at SBEL:* NVIDIA GPU Nodes (14x), AMD CPU Nodes (16x) - 4 x AMD Opteron 6274 2.2GHz 16

Future Work

Generalized Wall Boundary Condition (Improve Stability and Accuracy).

Further scaling analysis and comparison with MPI

Fluid-Solid Interaction leveraging Chrono.

Figure 6: BCE Markers for FSI with rigid (a) and flexible (b)

References

<u>Acknowledgements</u>

• This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for

• This project was sponsored by US Army TARDEC under Rapid Innovation Fund (RIF) grant W56HZV-14-C-0254.

> Simulation Based Engineering Lab University Of Wisconsin - Madison