Geo-distributed Machine Learning using Parameter Servers

Mihir Shete and Felipe Gutierrez-Barragan

Abstract— Large organizations operate in datacenters
across the globe to offer low latency services to users
located in its vicinity. The data generated by users which
interact with these services is present in the respective
datacenters distributed across the globe. It is a common
practice for organizations to run simple algorithms like
logistic regression or even complex machine learning
algorithms to get insights from the data. One way to
run these algorithms is to transfer the data to single
centrally located datacenter and use one from many of
the available distributed machine learning methods to
obtain insights. But this approach can be costly in terms
of time required and the money spent to transfer huge
amount of data to a central location, also regulatory
restriction might prevent transfer of data in certain cases.
In this work we develop and evaluate techniques to run
logistic regression and neural network based supervised
machine learning algorithms on geo-distributed data.
Our techniques are built on top of the Parameter Server
based learning approach, and we evaluate the modified
versions of synchronous and asynchronous stochastic
gradient descent (SGD) considering tradeoffs between
data exchanged across datacenters and the rate of con-
vergence.

I. INTRODUCTION

Large organizations that offer services to customers
all over the world have geographically distributed data
centers. These are conveniently located in the vicinity
of populace they serve to offer better quality of ser-
vice. Each data center offering these services collects
important data from the customers it serves. Processing
the data collected by these geo-distributed data centers
can provide important insights into the service usage
patterns, among other things, helping the organizations
to develop future roadmap.

Following the rise of these geographically distributed
services which produce data in situ, geo-distributed data
analysis has become an increasingly important prob-
lem. Systems such as Geode by Vulimiri et al.[13] and
Clarinet by Viswanathan et al.[14] have made progress
in handling geo-distributed batch analysis. Geodes main
goal was to reduce the inter-data center traffic and they
show a 250x reduction in data transfer over inter-data
center links as compared to the standard approach of

moving the data from edge data centers to a centralized
data center for batch analysis. Clarinet on other hand
optimizes query completion time by 2x by leveraging
recent advances in WAN aware data placement and task
scheduling.

Distributed machine learning algorithms and systems
are very popular areas of research [8], [9], [10], [11].
Even then, distributed Distributed Machine Learning
has not been explored in the geo-distributed context as
much as other core applications such as batch analytics,
streaming, and graph analytics. The work done by Cano
et al. (2016) [7] is one of the only accessible research
papers towards geo-distributed machine learning. They
implement a system that is able to derive a single model
from the learning tasks processing different data sets in
separate data centers. To overcome the high cross data
center communication costs they employ and extend
communication-sparse algorithm [9]. Such algorithm,
however, makes various assumptions about the machine
learning model in terms of sparsity and dimensionality
of the data, loss functions; that may or may not hold
true in the general geo-distributed case.

As a result of the minimal amount of previous
work in geo-distributed machine learning there have
not been any frameworks developed, specially geared
towards facilitating these tasks. In the single datacenter
context, however, various of such frameworks have
been developed. A particular framework that has been
extensively used to train some of the largest machine
learning models since it introduction is the parameter
server [3], [4]. An example of a parameter server
success story is Dean et al. (2012) [1]. They introduced
Downpour SGD which was able to achieve state of the
art scalability and performance on the ImageNet dataset
at the time, and one of the core components was the
parameter server. The algorithm runs on a data parallel
scheme in which multiple model replicas are trained on
subsets of the dataset. parameter server also played an
important role in the first massively parallel architecture
for deep reinforcement learning [11]. The algorithm
used in [1] was the Deep Q-Network algorithm which
was used to learn how to play 49 different Atari games,
and it delivered an improved performance in 41 of them

and a reduced train wall-time. Project Adam [12] is
another case where the parameter server played a role
in delivering state-of-the-art performance, scaling and
task accuracy.

Overall, the parameter server framework has served
as a tool for pushing the state of the art large-scale
Machine Learning in a single data center. Our work
aims to extend the research on parameter servers and
use them in a geo-distributed setting. We will leverage
the learning from this earlier research to develop a
system which performs better in terms of network
bandwidth usage than a naive approach where the
workers and parameter servers are not WAN aware. We
will quantify the network bandwidth gains using our
approach and contrast it with tradeoffs like - decrease
in convergence rate of the algorithm.

II. BACKGROUND & METHODS
A. Background

At the core of every machine learning algorithm
there is an optimization problem whose goal is to
minimize the classification error of a given machine
learning model. The training algorithm attempts to
achieve this goal by processing data, followed by up-
dating the model in the direction of a gradient that will
(hopefully) make it better describe the processed data.
This iterative process continues and multiple passes
(training epochs) are done through the full dataset until
an optimal (or good enough) solution is found, or
until the model is considered to have converged. For
many practical applications the training data, size of
the model (number of model parameters), or both, may
be extremely large. Therefore these types of algorithms
will have enormous computing, bandwidth, and storage
requirements that can only be achieved in a distributed
computing environment.

The parameter server is one of the most commonly
used frameworks/approaches to efficiently train and
evaluate these machine learning models in a distributed
setup. The parameter server architecture is depicted in
Figure 1. The machine learning model is distributed
over a set of servers (server group). Each worker node
reads a different batch of the training data, pulls the
model or a subset of the model, calculates the gradients,
and finally sends the gradients to the parameter server
where the model is updated.

B. Methods

We propose a hierarchical parameter server archi-
tecture for geo-distributed machine learning. The ar-
chitecture is depicted in Figure 2. In this architecture

Server Group

Server Server Server Server Server
Node Node Node Node Node

Any Worker can push/pull gradient
from any Server. The server to
transact with is determined by the

Key space is partitioned
and each server node
stores a partition.

Control Information is exchanged
between scheduler and
Servers+Workers like
ADD_NODE commands,
Heartbeat messages.

Scheduler Worker based on the key it wants

to query.

Worker Group

Worker Worker Worker
Node Node Node

Distributed File System

Worker
Node

Worker Nodes partition and read
the structured data for a distributed
file system.

Fig. 1: Parameter Server Architecture. A distributed
machine learning setup based on the parameter server
architecture consists of a pool of workers and servers.
The key space is distributed across all the servers using
consistent hashing. Workers calculate the gradients
and send them over to the servers. Servers have a
user-defined Optimizer class which is used to calculate
new weights from the gradients. The weights are
stored on the servers and workers can query for the
new weights whenever they are making a forward pass
across the model to derive new gradients or classifying
incoming or validation data.

every datacenter which contains a different subset of
the training data will run a set of workers and local pa-
rameter servers called leaf parameter servers. The leaf
servers run distributed SGD optimizer to update model
parameters based on the gradients pushed by co-located
workers. The SGD optimizer is slightly modified and
it pushes the entire model parameters over to a root
parameter server every user configured iteration. The
root parameter server runs a global optimizer which
just averages the model parameters received from all
the leaf servers. The leaf servers pull the updated
model from the root server and run further iterations
of SGD on this model. The global optimizer running
on the global parameter server is user specified, we are
currently using a simple parameter averaging optimizer.
In future we plan to develop and evaluate other types
of optimizers based on weighted moving averages.

1) Hierarchical parameter server implementation in
MXNet: MXNet[2] is a framework to ease the de-
velopment of machine learning algorithms, especially

- Leaf PS can accumulate gradients
and send to Root PS. Or they can
send over the computed Model, by D L Cerver
defining gdOptimizer interface. rmm

- Root PS used the user-defined
GlobalOptimizer to calculate new
weights.

- Leaf PS can pull the new model from
Root PS and use for further learning.

Datacenter 3

Datacenter 1 Datacenter 2

Leaf
Parameter Leaf
Server Parameter
Group - Workers push gradients. Server
- Parameter servers calculate (€5
weights from gradients using
the user-defined Optimizer.
- Workers pull the weights.

Worker Worker
Group Group Worker Worker
Group Group

Fig. 2: Hierarchical Geo-Distributed Parameter
Server Architecture. In a hierarchical distributed
machine learning setup based we define root and leaf
parameter server. Leaf parameter server are present
in each datacenter which hosts the training data.
Leaf parameter server run a modified version of
distributed SGD optimizer, which can either store all
the gradients received from workers and send them
to the root parameter server after a fixed number of
iterations or just send over the model parameters to the
root parameter server after some iterations. The root
parameter server, based on the data sent over by the
leaf parameter server can have an optimizer function
which can calculate the new model parameters. The
parameters can be pulled by leaf parameter server and
it can continue learning using these new parameters.

for deep neural networks. MXNet supports using a
parameter server for distributed learning by exposing
a distributed key-value store API to interact with the
parameter server. The core of MXNet and it’s param-
eter server implementation which is called parameter
serverLite is written in C++. Figure 3 shows the class
hierarchy of MXNet core implementation. To support
hierarchical parameter server in MXNet we modified
the Optimizer class. A method from the Optimizer class
is executed on a parameter server when the distributed
key-value store handles a push request from every
worker. The modified Optimizer acts as a ZeroMQ
endpoint which can communicate with a local worker
thread. This worker thread is local to every parameter
server instance and it establishes a communication
channel with the root parameter server. In root param-

eter servers we sub-classed the Optimizer to define a
GlobalOptimizer class which does operations on the
parameters or weights of the model instead of the
gradients.

KVStoreDistServer
- Handle Data/Commands
- Command handler wil call the
language binding specific method,
registered by the binding.
- Data Handler calls the optimizer to
merge the vectors

1 KVStoreDist
KVServer (extends SimpieAsp)
(SimpleAPP: simple network

communication pair)

KVWorker (extends SimpleApp)
l - Code to partition keys based on
server cardinality
- Sends partitioned keys and values
to appropriate servers in the pool

Customer
- Track responses to sent
messages
- Rxthread to receive messages e

B

Postoffice
- Singleton Class
- Customers registers with
Postoffice for rx/tx

Van
- ZeroMq Transport(via ZMQVan
class)

Fig. 3: MXNet Architecture. Major Classes in
MXNet, parameter serverLite and their dependencies.
Modules in Blue are implemented in MXNet and
modules in Green are implemented in parameter
serverLite.

2) Hierarchical parameter server implementation in
TensorFlow: TensorFlow is a very generic machine
learning library wherein we can express computations
as data flow graphs. Tensorflow does not have out of
the box parameter server support like MXNet but it
supports executing portions of these data flow graphs on
different machines. Using this flexibile programming
interface we define a portion of the data flow graph
to act as a parameter server which can exchange data
in Tensorflow’s native sparse data format. Dealing
in sparse data format is important to gain insights
on training with Criteo’s dataset using a hierarchical
parameter server as we will show in section 4.

III. EXPERIMENTAL SETUP
A. Datasets

For the purpose of evaluating our proposed methods
and setup we chose to use 3 data sets - MNIST
handwritten digits dataset, CIFAR-10 dataset, and the
Criteo click prediction dataset.

MNIST is a dataset of handwritten digits. It has
a training set of 60,000 examples, and a test set of
10,000 examples. The digits have been size-normalized

and centered in a fixed-size image of 28x28 pixels.
Since the dataset is not too large and is pre-processed
we believe it to be suitable for quickly evaluating our
learning techniques, and guide us on what experiments
can be fruitful on larger datasets.

The CIFAR-10 dataset consists of 60000 32x32
colour images in 10 classes, same number of classes as
MNIST. With 6,000 images per class, there are 50,000
training images and 10000 test images. CIFAR-10 is 2
times larger than MNIST and since the algorithms have
to consider RGB vectors it takes significantly longer to
run one iteration of training.

Criteo is a technology company that specializes in
performance display advertising. They take an algo-
rithmic approach to determine what user they show
an ad to, when, and for what products. Criteo has a
global presence with more than 7000 servers distributed
across 6 data centers on 3 continents. The Criteo click
prediction training set consists of a portion of Criteo’s
traffic over a period of 7 days. Each row corresponds
to a display ad served by Criteo. Positive (user clicked)
and negatives (user did not click) examples have both
been sub-sampled at different rates in order to reduce
the dataset size. The examples are chronologically or-
dered. There are 13 integer features and 26 categorical
features in the dataset, which expand to 33 million
features after one-hot encoding the data. Out of the
33 million features pero example there will only be a
maximum of 39 non-zero features (13 int features + 26
categorical features). Therefore, in order to efficiently
train an ML model on this data we have to work with
a sparse representation of it.

B. System Setup

We use virtual machines (VMs) in Cloudlab and
Google Cloud to run our experiments. In Cloudlab
setup we have 5 VMs in the same datacenter. Each VM
has 4 Intel Xeon Sandy Bridge cores, 20 GB memory
with a 315GB Virtual Disk. The maximum possible
throughput between VMs in this setup is 1 Gbps.
We use this setup for training and testing on MNIST
and CIFAR-10. To simulate a geo-distributed setup we
create artificial boundaries across virtual machines.

The Google Cloud setup has 15 VMs distributed
across 3 datacenters: us-eastl-c, us-centrall-c, us-
westl-a. One virtual machine in each datacenter runs a
parameter server, such a VM has 4 core Intel Haswell
processor with 8GB memory running Ubuntu 14.04.
All other machines, which act as worker nodes, have 2
core Intel Haswell processors with 1.8GB memory and

Ubuntu 14.04. Each machine has a 5S0GB SSD attached
which contains the subset of the dataset that will be
used by that node to train the model. Note that we
keep a copy of the subset of the dataset that will be
used by a given worker VM in Cloudlab and Google
Cloud. We do this to avoid the overheads of accessing
and writing to a distributed file system which can skew
our measurements, specially for network traffic. Each
worker running the training algorithm is assigned a rank
which determines the offset in the training data the
worker will process. In future experiments we would
like to use a more realistic setup with training data
stored on a distributed file system like HDFS.

C. Model Measurements

To evaluate the resulting models and compare
the across setups (Serial SGD, Distributed Syn-
chronous SGD, Distributed Asynchronous, Geo-
Distributed SGD) we used the following metrics:

1) Accuracy vs. Iterations: After every n training
mini-batches are processed we would calculate
the accuracy of the current model on a small
testing dataset.

2) Gradient Norm vs. Iterations: To see the con-
vergence of the optimization procedure we kept
track of the average gradient norm after every
mini-batch.

3) ROC Curve: Denotes the performance of a binary
classifier at various classification thresholds. Lo-
gistic regression model will output a probability
value for a given example. Different thresholds
will produce different true positive rates (TPR)
and false positive rates (FPR), and the ROC curve
are these TPR vs. FPR as the discrimination
threshold is varied.

IV. EXPERIMENTS & RESULTS
A. Learning from the MNIST dataset

MNIST dataset consists of pre-processed images
of handwritten digits. The dataset is widely used for
evaluating various learning algorithms. In the first ex-
periment we evaluate the performance of LeNet [12]
on MNIST when training is running on a single node.

From Figure 4 we can see that with LeNet the
convergence is achieved in 468 iterations which con-
stitute a single epoch. Using this as our baseline, we
will evaluate how SGD compares to it. There are 2
flavors of distributed SGD we consider - Synchronous
SGD and Asynchronous/Downpour SGD. When run-
ning synchronous SGD, the parameter server will allow

Model Accuracy on Validation Data vs Iterations

80 -

60

Accuracy %

40|

20 -

0 100 200 300 400 500
Iterations

Fig. 4: LeNet accuracy on MNIST testing dataset.
We train MNIST on a LeNet model in MXNet. The
batch size is 128, learning rate is 0.1. The model
converges to 98% accuracy in one epoch.

workers to calculate gradients for (n+1)th batch only
when it has received gradients for the nth batch from all
workers. This model should give the same results as a
serial SGD implementation with a relatively large mini-
batch (if there are m workers sync SGD is combining
the gradients of m mini-batches). In asynchronous
mode, the parameter server does not impose any barrier
on the workers and they can proceed independently
with training. In its simplest form, asynchronous SGD
has each worker pull the model, calculate the gradient,
and send the gradient to the parameter server where
the model is updated. To reduce the communication an
asynchronous SGD implementation can choose to only
fetch the model every 7 ¢escp, steps and push its updates
every npyusp. There is one more mode of operation
known as bounded asynchronous SGD. The the pros
and cons of each mode of operation is discussed in
detail by Mu Li et al.[3]. The aspect of synchronous and
asynchronous SGD we want to concentrate on is the
rate of convergence and the network traffic generated
to reach convergence.

We run the distributed SGD experiments on Cloud-
Lab cluster. One node (hostname: vm-28-1) is con-
figured to run as the parameter server and the other
4 nodes as workers. Since there are 4 workers, each
worker will only process 25% of the entire dataset, i.e
they will run 25% of the total iterations compared to the
serial case that was previously demonstrated in Figure

4. Figure 5 shows the accuracy of synchronous SGD.
With 25% of the total number of iterations, we see
that it achieves similar accuracy to the single node run
shown in Figure 4.

The results for asynchronous SGD are not shown
here because the training did not converge, even after
10 epochs. The accuracy converges to 10% which is
the same as a random model. Refer to the project wiki
for the asynchronous SGD results.

Model Accuracy on Validation Data vs Iterations

Accuracy %

o] 26 4‘0 éO ﬂb 1(‘]() 120
lterations

Fig. 5: LeNet accuracy on MNIST testing dataset

with synchronous SGD. We train MNIST on a LeNet

model in MXNet. The batch size is 128, learning rate

is 0.1. The model converges to 98% accuracy in one

epoch.

A naive way to design a geo-distributed machine
learning system would be to have a setup similar to
our downpour SGD experiment. The difference will
be that the workers can be spread across different
datacenters and the parameter server maybe on a com-
pletely different datacenter from the workers. To do
a cost-benefit analysis of this approach we capture
the network i/o done by the parameter server when
we run the synchronous downpour SGD experiment.
From Figure 6 we can see that the amount of data
transferred over the network by the parameter server
is 35x as compared to the training data size. So in a
naive geo-distributed parameter server implementation
we would have incurred a 35x network penalty for
obtaining the same accuracy. We call this network
penalty as network usage amplification. For a geo-
distributed learning system to be usable the network
usage amplification should be much less than 1 while

120

vm-28-1 - Network I/O vs Time

— Receive
— Transmit

Sync Freq. | Test Acc. % | Net Ampl.
1 99.0 35
5 98.0 17.5
10 97.8 0.11

100 W

@
=}

Network /0 (Mb/s)
=)
S

a0t

20

0 20 40 60 80 100 120
Time (s)

Fig. 6: Network traffic profile for parameter server
while running synchronous SGD on MNIST. Total
traffic transmitted by parameter server is 799.91MB,
total traffic received is 813.47 MB. The size of MNIST
training data is 45MB. There is 35x network usage
amplification as compared to using a simple approach
of transferring the entire 45MB dataset to a single
datacenter.

obtaining an acceptable accuracy for the learning task,
unless there are regulatory restrictions preventing data
movement then network usage amplification only repre-
sents the extra cost in terms of money spent to achieve
the desired accuracy.

Table I compares our hierarchical geo-distributed
model with classic distributed SGD for training on
MNIST. In this experiment leaf parameter server was
configured to push the entire model over to the root
parameter server every nth interaction it did with the
workers, root parameter server was running a simple
Global Optimizer which just averaged the incoming
model parameters with the current model parameters.
The purpose of this experiment was to see how the
choice of global optimizer and the frequency of updates
affects the convergence. From Table I we can see that
training on MNIST gave a satisfactory accuracy for
testing data while achieving a lesser network usage
amplification.

Table II shows the results of training over CIFAR-
10 data using BN-inception model using a hierarchical
parameter server. The experiments did not give a sat-
isfactory accuracy even if we compare it to a single
node run of the model which gave 63% accuracy on

TABLE I: Comparison of models obtained by
changing the frequency of parameter exchange for
MNIST. We see that the test accuracy for the model
is acceptable even as the network amplification is
decreased to 0.11 when using hierarchical parameter-
server architecture.

Sync Freq. | Test Acc. % | Net Ampl.
1 53.6 35
10 47.5 0.47

TABLE II: Comparison of models obtained by
changing the frequency of parameter exchange
for CIFAR-10. CIFAR-10 dataset is 110MB and
the accuracy shown above is just for 1 epoch using
BN-inception model for small images.

the testing data on running the training for one epoch.
Thus, optimizing hierarchical architecture’s parameter
to successfully train on CIFAR-10 is still an open
problem.

B. Learning on the Criteo Dataset

The lack of support for sparse data structures and
operations on MXNet, led us to choose Tensorflow
for the evaluations on the Criteo dataset. The need
for sparse support in this particular dataset arises from
two reasons. First, the size of the dense representation
of the data makes the gradient calculation extremely
slow and the size of the mini-batch that can be in
memory at a time small. Second, even a simple ML
model (e.g logistic regression) for this data will have at
least as many model parameters/weights as the number
of features (33 million), leading to extremely high
network usage when replicating the model at the worker
nodes. Therefore, sparse communication of the model
and sparse operations on the data are required for an
distributed and geo-distributed implementation of an
ML model on this data.

We train a logistic regression model for binary
classification (click/no-click). We have three working
implementations of this task on Tensorflow.

1) A serial/single node mini-batch SGD implemen-
tation. This implementation reads n sparse train-

ing examples, collects the model parameters that
will be updated given the sparse example indices
(i.e a sparse model representation), calculates a
gradient on the sparse data and model, averages
the sparse gradients for the mini-batch, and fi-
nally updates the model.

2) A distributed synchronous SGD implementation.
The full model is maintained on a parameter
server node. Each worker reads a sparse mini-
batch of training data, and given the sparse
indices it fetches the model parameters it will
be calculating gradients for. Gradient calculation
happens locally and each gradient per example
in the mini-batch is aggregated into one single
sparse gradient which is pushed to the parameter
server. At the parameter server the incoming
gradients are averaged and applied to the model.
Once this is done each fetches the model again
and repeats.

3) A naive geo-distributed synchronous SGD imple-
mentation. This follows exactly the same setup
as the distributed synchronous SGD, however,
the workers have to fetch the parameters from
a parameter server located at another datacenter.

All three implementations were able to successfully
train a model on a subset of the Criteo dataset. Results
for accuracy, ROC curve, Precision-Recall curve can be
found in the project wiki. A network amplification us-
age analysis has not been completed in this case for two
reasons. First, a working hierarchical geo-distributed
parameter server implementation is not implemented.
The various challenges encountered to implement this
on Tensorflow are discussed in the following section.
Second, we found that even though we think we are
sending a sparse representation of the model to each
worker the network usage is extremely high (500
MB/s, and we would expect 1 MB/sec). Therefore,
an accurate analysis for training on a geo-distributed
setup on data of this nature (large and sparse) is not
yet available. To see the current results see the project
wiki.

V. DISCUSSION
A. Tensorflow Challenges:

There were two main challenges when working with
Tensorflow. The first challenge was mainly due to
the absolute requirement of sparse data structures and
operations to train a model for the Criteo dataset. Since
the sparse support in Tensorflow is still in its early
days the available functions for training did not support

sparse data structures as input, and therefore we had to
implement everything from scratch. Second, there is
not a lot of documentation on distributed Tensorflow
that does not use the training API they offer, and
our implementation did not use any of their training
functions because of challenge 1.

B. Criteo Dataset Discussion:

The Criteo dataset is particularly interesting when
comparing the network usage of the hierarchical geo-
distributed PS with the naive geo-distributed PS. In
the case of a logistic regression the a model with
33 million parameters is 250MB. In the hierarchical
PS, transferring the full model every n iterations will
still lead to an elevated network usage. On the other
hand, in the naive geo-distributed PS the workers at
other datacenters only fetch a small subset of the
model which should lead to a lower network usage.
Therefore, for a hierarchical parameter server to be able
to compete network-usage-wise with the naive setup, it
might need to only send the subset of the model that
was updated during the n iterations.

REFERENCES

[1] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, MarcAurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y.
Ng. Large Scale Distributed Deep Networks. NIPS, 2012.

[2] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, Zheng Zhang.
MXNet: A Flexible and Efficient Machine Learning Library
for Heterogeneous Distributed Systems. NIPS Workshop on
Machine Learning Systems, 2016.

[3] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J.
Shekita, Bor-Yiing Su. Scaling Distributed Machine Learning
with the Parameter Server. OSDI, 2014.

[4] Mu Li, David G. Andersen, Alexander Smola, and Kai Yu.
Communication Efficient Distributed Machine Learning with
the Parameter Server.

[5] Ilan Lobel and Asuman Ozdaglar. Distributed Subgradient
Methods for Convex Optimization Over Random Networks.
IEEE Transactions on Automatic Control, 2011.

[6] Tim Dettmers. Deep Learning in a Nutshell: History and
Training. NVidia Parallel for all blog, 2015.

[7] Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino,
Giovanni Matteo Fumarola. Towards Geo-Distributed Ma-
chine Learning. Arxiv, 2016.

[8] Mcmahan, H. B., & Streeter, M. (2014). Delay-
Tolerant Algorithms for Asynchronous Distributed Online
Learning. Advances in Neural Information Processing
Systems (Proceedings of NIPS), 19. Retrieved from
http://papers.nips.cc/paper/5242-delay-tolerant-algorithms-
for-asynchronous-distributed-online-learning.pdf

[9] Dhruv Mahajan, Nikunj Agrawal, S. Sathiya Keerthi, S.
Sundararajan, Leon Bottou. An efficient distributed learning
algorithm based on effective local functional approximations.
Journal of Machine Learning Research 16 (2015) 1-32

(10]

(1]

[12]

Google Research. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. 2015.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Al-
cicek, Rory Fearon, Alessandro De Maria, Vedavyas Pan-
neershelvam, Mustafa Suleyman, Charles Beattie, Stig Pe-
tersen,Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu,
David Silver. Massively Parallel Methods for Deep Rein-
forcement Learning. International Conference on Machine
Learning, 2015.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278-2324.

