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Abstract

Content-based image retrieval (CBIR) uses visual informa-
tion in images to identify images relevant to a query image.
Feature extraction is an essential step for CBIR. Learning-
based feature extraction methods are the current state of the
art. Nonetheless, these methods are not robust to 3D trans-
formations if these transformations are not extensively rep-
resented in the dataset. Capsule networks are a novel neural
network architecture that has achieved state of the art results
in image recognition tasks. One particular promising charac-
teristic of capsule network models is that they are rotation,
translation, and viewpoint equivariant which make them ro-
bust to 3D transformations without the need of data augmen-
tation. In this project we study and implement two capsule
network architectures and their respective routing algorithms
and apply them to the CBIR task on the Google Landmark
dataset.

Introduction

Content-based image retrieval (CBIR) uses visual informa-
tion in images (rather than metadata like captions or geotags)
to identify images relevant to a query image. Feature ex-
traction, as seen in the pipeline for image retrieval in Figure
[l is an integral step for good performance. The algorithms
used for feature extraction for image retrieval as outlined by
a recent review paper (Zhou, Li, and Tian 2017) state that
learning-based features generally outperform hand-crafted
features.

Why not use CNN-based feature representations for
CBIR? In recent years, convolutional neural networks
(CNNSs) have become the state-of-the-art in many computer
vision tasks, in part due to their ability to learn good fea-
ture representations. Yet, CNNs are not robust to common
transformations such as scaling and rotation. A simple so-
lution to this problem is to perform data augmentation and
include more samples with diverse transformations. This is
a sub-optimal solution that not only avoids tackling this fun-
damental limitation of CNNs, but also compels the need for
more computational resources to train the model with the
larger augmented dataset.

In this project, we explore capsule networks for CBIR.
Capsule network is a novel neural network architecture that
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attempts to solve the limitations in CNNs (Sabour, Frosst,
and Hinton 2017; |[Hinton, Frosst, and Sabour 2018)) in three
ways. First, capsule networks do not use pooling layers. De-
spite their usefulness in practice, pooling layers allow the
learned features to be positional invariant. However, this also
means that the network forgets where the feature was and
more importantly where it was with respect to other fea-
tures. Capsule networks are described to be equivariant as
opposed to invariant. Equivariance is the property where a
transformation of input image results in an equivalent trans-
formation of the feature representation. Secondly, capsule
networks leverage the linearity in pose transformation in
3D space (translation, rotation, viewpoint, scale). Finally,
capsule networks use a specialized feedforward algorithm
(called routing) that attempts to direct activations from lower
level features (neurons/capsules) only to the relevant higher
level features.

The described properties of capsule networks in theory
should lead to a feature representation that is robust to 3D
transformations. In the remainder of this report we will de-
fine the CBIR task and provide more background on capsule
networks. Then, we present the results for experiments per-
formed on two standard datasets.

Background & Methods
CBIR Task

CBIR is a learning task that uses visual information in im-
ages to identify other images similar to the query image. In
the past, CBIR has been done in supervised, unsupervised,
and semi-supervised settings. The typical CBIR pipeline is
outlined in Figure ]

There are three technical aspects to the CBIR task:

1. Image representation: This refers to the feature extrac-

tion part of the pipeline. Images are represented as a set
of visual features such that they are descriptive (identify
similar images), discriminative (distinguish dissimilar im-
ages) and robust to image transformations. This is the
aspect of the CBIR task that we are focusing on in this
project.

2. Image organization: This refers to the efficient storage

and indexing of the feature representations for each im-
age.
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Figure 1: Pipeline for content-based image retrieval

3. Image similarity measurement: This refers to the com-
parison of a query image with the images existing in a
database, that results in a score for each image. The scores
are ranked and the top-k relevant images are returned to
the user. The relevance score is often obtained by measur-
ing distance between the image representations or aggre-
gating number of local visual feature matches.

Capsule Networks

Capsule networks (Hinton, Frosst, and Sabour 2018;|Sabour,
Frosst, and Hinton 2017) differ from traditional neural net-
works in two ways. Firstly, the fundamental unit of the net-
work is called a capsule. Secondly, signals between layers
are propagated in a novel way, termed as routing, which
results in similar capsule activations (predictions) being
grouped together.

Capsules The fundamental unit of a capsule network is
a capsule. A capsule represents the presence (or absence)
and parameters of a multi-dimensional entity (e.g. object,
feature, shape) of the type that the capsule detects. Similar
to activation units in a neural network, capsules will output
the detection probability for such entity. In addition to this
probability, each capsule will also output a pose matrix as-
sociated with that feature. The pose matrix and activation
probabilities of a capsule ¢ are denoted as M; and a;. These
parameters are computed during the forward pass through
the network.

Connections Between Capsules A lower level capsule, 4,
is connected to a higher level capsule, j, via a weight matrix,
'W;;. These matrices are learned during backpropagation.
During forward propagation the pose matrices from lower
level capsules M; are multiplied by Wj;. If capsules ¢ and
7 are related the resulting matrix is a prediction of what M
should look like. The relation between capsules ¢ and j is
quantified by an assignment probability, r;;, which is cal-
culated during the routing-by-agreement step. In (Sabour,
Frosst, and Hinton 2017) they refer to this assignment prob-
ability as the coupling coefficients between capsules.

Routing Procedures (Hinton, Frosst, and Sabour 2018}
Sabour, Frosst, and Hinton 2017) proposed two different
methods to perform routing between layers of capsules.

Routing in capsule networks is an alternative to pooling in
CNNs, which directs (groups) the outputs of lower level cap-
sules that make similar predictions for the pose matrix of the
higher level capsules. This means that the output pose ma-
trix of a higher level capsule will be mainly based on the in-
put lower level capsules that made similar predictions. The
other lower level capsules that made different predictions
will have very little impact on the prediction of the new pose
matrix. Both papers introduce routing algorithms to calcu-
late the next layer pose matrices, activation probabilities,
and the assignment probabilities. In this project, we study
the performance of Dynamic Routing (Sabour, Frosst, and
Hinton 2017) and Expectation-Maximization Routing (Hin-
ton, Frosst, and Sabour 2018)). Hereon, we refer to these two
algorithms as CapsNet-DR and CapsNet-EM.
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Figure 2: Capsule Network Diagram

CBIR with Capsule Networks

In this project we use a capsule network learned under the
supervised setting for image recognition to perform content-
based image retrieval for query images. In order to do this,
we first train a capsule network for image recognition using
supervised learning on the Google Landmark dataset. We
then use the features encoded by the last layer of the net-
work on the training data to compare with the features from
a query image encoded by the same network. Finally, we use
the L2 norm as the distance metric to retrieve top-5 number
of similar images (ideally of the same content).

Implementation Details

With our ultimate goal of exploring novel solutions for
CBIR on a large dataset, we focus our efforts on the nascent
capsule network architecture. To this end, we define 4 key
stages of our project. The goal of the first 3 stages is to im-
prove our understanding of capsule networks and perform
image recognition in the supervised setting. The final stage
attempts to implement and evaluate a capsule network based
image retrieval pipeline.

1. MNIST for Implementation Validation: In this stage we
validated the capsule network architectures and rout-
ing algorithms introduced in (Sabour, Frosst, and Hinton
2017; [Hinton, Frosst, and Sabour 2018)).



2. Capsule Network vs. CNN: In this stage we took the
network learned in stage 1 and benchmarked it against
a state-of-the-art CNN (Convolutional-Neural-Network )).
In particular, we tested the claim that capsule networks
need less data than CNNs. We created a learning curve
of the performance of these two models on the MNIST
dataset.

3. Recognition on a Complex Dataset: In this stage we eval-
uated the capsule network models on the labeled Google
Landmark dataset. We chose the more promising model
for the image retrieval task.

4. Supervised Image Retrieval: In this stage we extended the
learned network from stage 3 to build an image retrieval
pipeline that takes a query image and returns the top-5
most similar images as determined by the learned features
of our network.

Datasets

We trained three different neural network models on
the MNIST dataset and a post-processed Google Land-
mark dataset (Kaggle-Landmark-Recognition 2018;
Kaggle-Landmark-Retrieval 2018} |LeCun et al. 1998)).

MNIST dataset MNIST is a popular dataset for computer
vision based machine learning research due to its small size
and ease of use. It consists of 60,000 training and 10,000
test images of size 28x28 pixels. The images are normalized
black and white digits drawn from the same distribution. We
use MNIST for stages 1 (to validate the capsule network ar-
chitecture on a simple dataset) and 2 (to compare capsule
network with the state-of-the-art CNN).

Google Landmark Recognition and Retrieval dataset
Google recently released the Google Landmark dataset
and two Kaggle challenges for landmark recogni-
tion and landmark retrieval (Google-Landmark 2018;
Kaggle-Landmark-Retrieval 2018} |Kaggle-Landmark-
Recognition 2018)). The dataset contains images from more
than 30,000 landmarks (i.e. it has around 30,000 classes).
The full dataset contains more than 2 million images. There
are a few particular characteristics of this dataset. Firstly,
popular landmarks such as the Rialto bridge in Venice
(Figure 9] first row) will have many more images than less
popular ones. In fact, through some initial analysis we find
that 50-100 classes compose around 30 percent of the full
dataset. Secondly, as opposed to other datasets that try
to recognize object categories such as lamps and chairs,
landmarks will have very little intra-class variations. Most
of the differences will come from different viewpoints,
illumination changes, occlusions, weather, and camera.
Finally, in many of these images the particular landmark
might not be the primary focus of the photo. For instance,
the main character in the image might be a person or group
of people and the landmark will be in the background (see
images u, v, w, y in Figure[9). Overall, the landmark dataset
is one of the largest datasets available to date making it a
good candidate to evaluate capsule networks on a larger
scale problem.

Landmark Dataset Post-processing: Due to time
constraints and limited compute and storage resources
available, we work with 50 classes from the landmark
dataset. Furthermore, due to the imbalance in the number of
samples available for each class we specifically choose the
50 classes with the most images available. This guaranteed
that we did not encounter a situation where a class only had
a single image. The final dataset with 50 classes had a total
of around 300,000 images. Additionally, the images in the
dataset all had different scales so we performed the appro-
priate amount of down-sampling for the different neural
networks we implemented. We use 90% of the images for
training and 10% for testing and perform retrieval on the
test set.

Software & Hardware

We configured Tensorflow using Python 3 on multiple ma-
chines with NVIDIA GPUs (1070Ti, 1080Ti, Titan XP).
The code and implementation documentation for all mod-
els and data postprocessing can be found in this repository
(760-Project-Repository 2018). The code was modified from
available implementations of capsule networks (CapsNet-
DR-Tensorflow 2018} [CapsNet-EM-Tensorflow 2018)).

Architectures

We briefly describe the implementations used for the
three models used in our experiments: Convolutional neu-
ral network (CNN), capsule network with dynamic rout-
ing (CapsNet-DR) and capsule network with routing by
Expectation-Maximization (CapsNet-EM).

CNN Figure 3] shows the architecture for the baseline
model for our experiments with the MNIST dataset.
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Figure 3: CNN: Convolutional neural network.

CapsNet-DR  As shown in Figure[d] the first layer is a 9x9
convolutional layer with 256 channels and a stride of 1 with
a ReLU non-linearity. This is followed by a convolutional
capsule layer with 32 capsules each with 8 convolutional
units with a 9x9 kernel and a stride of 2. The final cap-
sule layer has one capsule per output class, 10 in the case
of MNIST dataset and 50 in the case of Landmark dataset,
that is fully connected to the layer below.

CapsNet-EM  As shown in Figure[5] the first layer is a 5x5
convolutional layer with 32 channels and a stride of 2 with a
ReLU non-linearity. This is followed by three capsule layers,
the primary capsule layer with B=8 capsule types and the
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Figure 4: CapsNet-DR: Capsule network with dynamic rout-
ing. Diagram obtained from (Sabour, Frosst, and Hinton
2017)

two 3x3 convolutional capsule layers (K=3) with C=D=16
capsule types and strides of 1. The final capsule layer has
one capsule per output class, E=10 in the case of MNIST
dataset and E=50 in the case of Landmark dataset.
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Figure 5: CapsNet-EM: Capsule network with routing by
Expectation-Maximization. Diagram obtained from (Hin-
ton, Frosst, and Sabour 2018)

Experiments and Results

In this section we present the different results obtained with
all three models we implemented.
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Figure 6: Epoch vs test accuracy results for MNIST dataset.

In order to validate both the capsule network implemen-
tations, we trained them on the MNIST dataset. Figure [f]
shows the test accuracy the capsule network models would
achieve after each training epoch. After roughly 10 epochs,
CapsNet-DR achieves 99.42% accuracy and CapsNet-EM

achieves 99.5% accuracy. This is comparable, but falls
slightly short of the performance reported in the paper.

Do capsule networks need less training data?
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Figure 7: Learning curve of a CNN and a CapsNet with EM
routing. Both models are trained on the MNIST dataset us-
ing various training set sizes.

Figure [7] shows the learning curve (training set size vs.
test accuracy) for a regular CNN and the CapsNet-EM mod-
els. The CapsNet-EM model needs less data than the CNN
model to achieve comparable test accuracy.

Landmark recognition with capsule network
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Figure 8: Epoch vs test accuracy results for the Google
Landmark dataset.

Figure ] shows the achieved test accuracy by each of the
capsule network models that were implemented. We used
the landmark dataset with only 50 classes. Both models sig-
nificantly outperform random guessing (accuracy of 2% for
50 classes). Due to time constraints (because of the time-
consuming iterative nature of EM), it was only possible to
train CapsNet-EM with 44% of the training data and for
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Figure 9: Resulting image retrieval using the CapsNet-DR. The left most image is the query image. The subsequent columns
contain the resulting output images from the best to the worst match.



less than half the epochs. This performs better than random
guessing but worse than the CapsNet-DR, which is trained
on the entire training dataset. Out best performance for land-
mark recognition was 67.8% accuracy.

CBIR with capsule networks

We use Mean Average Precision (MAP) as a metric to mea-
sure the performance of the retrieval task. This metric is the
mean of average precision across all classes. In a retrieval
task, if the top-k results are returned to a user, all k should
ideally be relevant. However, if only some are relevant, then
it is better if the relevant results are shown first. The MAP
score reflects this. For one query from each of the 50 classes,
we calculate the average precision and then find the mean
across all classes. We obtain a MAP = 0.683 for the land-
mark dataset.

Figure [0 shows the image retrieval results using the
CapsNet-DR. We only evaluate this model on the retrieval
task for two reasons. As seen in Figure [§|it outperforms the
CapsNet-EM model. More importantly, the CapsNet-DR
model was trained on the full 50-class landmark dataset.
The image in the leftmost column is the query image.
The second through the fifth column are the images in
the test set whose output feature vectors were the most
similar in terms of the Frobenius norm. The columns are
ranked in decreasing order of similarity to the query image.
Additional retrieval results can be found in the project repos-
itory:  https://github.com/bad884/760-project/tree/master/
landmark_capsnetDR/retrieval (760-Project-Repository
2018).

Discussion

The MNIST results shown in Figures [6] and [7] give us a de-
gree of confidence that the implemented models are correct.
In particular, they also demonstrate that both CapsNet-EM
and CapsNet-DR are already at the accuracy saturation point
(similar to CNNs). This means that in order to obtain better
metrics of the performance of capsule networks, these mod-
els should be benchmarked on larger and more complicated
datasets such as CIFAR100 and ImageNet.

One particular disadvantage of current capsule network
models, CapsNet-EM in particular, is the speed of training
and the amount of computational resources (memory and
GPU) required for training. Nonetheless, further research
may show that these disadvantages are offset by advantages
such as requiring less training data (Figure[7), faster conver-
gence, and fewer model parameters. Exploring these trade-
offs between current state of the art CNNs and capsule net-
works might be a promising research direction.

We use the Google landmark dataset to test the perfor-
mance of capsule networks in a more challenging setting.
In Figure [8| we see that CapsNet-DR performs better than
CapsNet-EM, contrary to what the authors show (Hinton,
Frosst, and Sabour 2018). We posit that this is due to train-
ing the CapsNet-EM model with lesser data and for fewer
epochs than the CapsNet-DR model. More importantly, the
EM routing procedure is an iterative process and we use
fewer number of iterations than that reported in the paper.

We believe that engineering the CapsNet-EM model to be
more efficient in terms of time and memory usage along with
better computational resources can improve the results pre-
sented in Figure 8]

State-of-art content-based image retrieval for landmarks
achieve an MAP > 0.9 on smaller datasets with fewer
classes. In Figure [0} for query images (a) and (g), all the
retrieval results belong to the same class. The retrieved im-
ages vary in terms of viewpoints, illumination changes, oc-
clusions, weather and camera. The query image (m) has one
wrong retrieval in (q). The performance for query images
(s) and (y) is poor, possibly because only a small portion
of the landmark is seen in the query image. Even though
our MAP of 0.683 does not compare with state-of-art deep
retrieval models, the retrieval of (n) and (ab) for their re-
spective query images shows promise of equivariant feature
representations.

Conclusion

In conclusion, capsule networks are a promising network
architecture for content-based image retrieval. In order to
establish the robustness of capsule networks to 3D trans-
formations for image retrieval tasks, future work should
benchmark against state-of-art CNNs with and without data
augmentation. Additionally, we evaluate the performance of
capsule networks in a 50-class recognition and retrieval task
and achieve encouraging results. Previous work have eval-
uated capsule networks only for datasets with less than 10
classes and with images obtained in controlled settings.
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