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Abstract

Continuous-Wave Time-of-Flight (CW-ToF) imaging have become the pre-
ferred depth sensing technology for many applications. The depth precision
achieved by a CW-ToF system is highly dependent on the set of light mod-
ulation and sensor demodulation functions used. Recent work has led to the
development of novel sets of CW-ToF coding functions (modulation and de-
modulation) that are robust to strong photon noise and sensor-related noise.
These coding functions were mainly designed assuming that a sensor pixel
only receives direct illumination from the point in the scene being imaged.
In practice, that sensor pixel will also receive a global illumination compo-
nent. In this project we will benchmark the performance of these new coding
functions in the presence of global illumination.
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1. Introduction & Background1

1.1. Time of Flight Imaging2

Time of Flight (ToF) refers to the time that a light pulse takes to travel3

from a source to a target scene back to a detector. This technique is often4

used to recover scene depth and geometry. Continuous-Wave ToF (CW-5

ToF) is one particular low-cost ToF setup where the light source intensity6

and sensor exposure are temporally modulated by a modulation (M(t)) and7

demodulation (D(t)) function, respectively. The light reflected from the scene8

and incident on a sensor pixel (p) will be a scaled, phase shifted, and vertically9

shifted version of the M(t) denoted as the incident radiance, L(p, t) (see10

equation 1. Note that the scene depth, Γ, is encoded in the temporal shift11

(phase shift, φ = 2Γ
c

) of L(p, t). This process is illustrated by Figure 1.12
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The brightness, B(p), measured at a sensor pixel is the temporal correlation13

between L(p, t) and D(t). Since there are 3 unknowns (depth, ambient, and14

albedo) at least K ≥ 3 measurements are needed to recover depth.15

L(p, t) = β(p)M(t− 2Γ

c
) + La (1)

Figure 1: Illustration of a CW-ToF setup.

1.2. Direct & Global Illumination16

CW-ToF cameras assume that sensor pixels receive light only due to direct17

illumination of scene points from the source. In practice, due to global illu-18

mination, the sensor pixel also receives light that has traveled along different19

paths after multiple reflections. Accurate recovery of scene depths requires20

the separation of the direct and global illumination components. This is a21

difficult task and an active research area [1, 2].22

1.3. Time of Flight Coding Functions23

Recent work in CW-ToF imaging has shown that the depth precision24

of these systems is tightly related to the set of coding functions M(t) and25

D(t) [3, 4]. In most current techniques, the functions are sinusoidal or square26

waves, which as shown in [4] are sub-optimal. The coding functions presented27

in [3] were mainly designed to be robust to strong ambient illumination and28
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sensor noise. In this project we will test the performance of these new coding29

functions in scenarios with various noise levels and global illumination effects.30

2. Methods31

2.1. Image Formation Model32

The measured brightness at a sensor pixel, Bi(α,Γ, La), is a function of33

the coding function pairs Mi(t) and Di(t), scene point reflectance (β), depth34

(Γ), and ambient illumination (La). The incident radiance on the sensor35

pixel is temporally correlated with the demodulation function as shown in36

equation 2 for a fixed integration time T .37

Bi(β,Γ, La) =

∫ T

0

D(t)(βM(t− 2Γ

c
) + La)dt (2)

If we pool together some of the constance factors from equation 2 we get38

the following equation39

Bi(α,Γ, La) = αFi(Γ) + γiLa (3)

where,40

Fi(Γ) =

∫ T

0

D(t)M(t− 2Γ

c
)dt

γi =

∫ T

0

D(t)dt

1 ≤ i ≤ K, K ≥ 3

(4)

wheere α is the scaled albedo and Fi(Γ) is the set of K correlation func-41

tions. The brightness equation 3 has 3 unknowns, hence, we need at least42

3 brightness measurements to be able to decode th depth. Furthermore,43

each brightness measurement i will be associated to a different correlation44

function.45

2.2. ToF Coding Schemes46

The set of K correlation functions Fi(Γ) is hereafter referred to as a47

ToF coding scheme. Commercial ToF systems commonly use a sinusoidal48

coding scheme such as the one shown in figure 2, where the modulation49

functions are a cosine and each demodulation function is a sinusoid at a π
2

50
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shift from each other. Recent work proposed novel types of coding schemes51

called hamiltonian coding schemes robust to noise. These are illustrated in52

figure 3. Each different set of K values in the correlation function correspond53

to a different depth Γ. In this project we compare the performance of these54

three coding schemes in the presence of global illumination.55
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Figure 2: Sinusoidal coding scheme.
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Figure 3: Hamiltonian coding scheme for K=3 (left) and K=4 (right) correlation functions.

2.3. CW-ToF Simulation Pipeline56

To evaluate the performance of the different coding schemes we have to57

be able to simulate the process of acquiring a brightness measurement given:58

scene parameters, sensor parameters, source power, and ambient power. The59

4



CW-ToF simulation pipeline followed in this project is shown in figure 4.60

First, the modulated light is propagated to the scene, scaled by the scene61

reflectivity, vertically shifted by the ambient light, and phase shifted due to62

the propagation distance. The received radiance is correlated with the sensor63

demodulation function and integrated. The variance of the gaussian photon64

noise is determined by the magnitude of the brightness measurement (inte-65

gration of the radiance and demodulation). Then we check if the brightness66

value obtained saturated the sensor. The next step is to add gaussian read67

noise. Finally, in an accurate CW-ToF simulation you would perform the68

analog to digital conversion which introduces quantization noise, however,69

this last step is not performed in our simulation.70

Figure 4: Simulation Pipeline for CW-ToF.

Impulse Response of a Scene: Steps 1 through 4 of the simulation71

pipeline can be easily implemented if we assume only direct illumination. The72

phase shift applied would simply be determined by the distance traveled by73

M(t). When accounting for global illumination the implementation becomes74

less trivial because on top of the direct response we will also have a long75

residual signal due to light that bounced off multiple times before returning76

to the detector. To accurately account for that multipath residual in our77

pipeline steps 1 through 4 are performed in the following way:78

1. Obtain the impulse response for a scene point. To obtain the impulse79
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response we set the modulation function to a delta pulse and we assume80

a sensor that can sample very fast. Figure 5.81

2. Convolute the impulse response of the scene point with the modulation82

function.83

Impulse Response at Single Sensor Pixel

Figure 5: Impulse response at a sensor pixel. The left plot shows the zoomed in residual
signal caused by global illumination effects.

In order to obtain the impulse response of the sensor pixel we use a84

transient rendering code [5].85

3. Experimental Setup86

We evaluate two different scenarios. First, we take a small patch from a87

complex scene that leads to more comprehensible depth map results. The88

patch and the scene it is obtained from are shown in Figure 6. For each of89

these scenarios we perform two simulations. The first one with the direct90

illumination component only. The second simulation with both the direct91

and global illumination component.92

Mean Absolute Depth Error: In order to evaluate the performance of93

each coding scheme we calculate the depth for each pixel. We then take per94

pixel absolute difference between the calculated depth and the true depth.95

Finally, we take the mean across all pixels.96

Coding Schemes: We compare the three coding schemes displayed in97

figures 2 and 3. I will refer to each of these coding schemes in the results98

sections as Cosine K=3, Hamiltonian K=3, and Hamiltonian K=4.99
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Ground Truth Depth Map

Bedroom Scene Patch of Bedroom (40 x 40 pixels)

Figure 6: Complex scene used for in the simulations. The performance (mean absolute
depth error) is evaluated on both the full scene depth map (middle) and a small 40x40
patch of the scene (right most).

4. Results100

In this project we evaluated the coding schemes in two cases under differ-101

ent noise levels: direct illumination only, and direct and global illumination.102

4.1. Scene Patch Results103

Figures 7 and 8 show the reconstructed depth maps for the scene patch104

at various noise levels for direct and for direct and global illumination. As105

the noise is increased all the coding schemes are slightly affected, however,106

it is evident that cosine is the one less robust to high noise levels. Figure 9107

shows the mean absolute depth errors of the 3D reconstruction obtained by108

each coding scheme.109
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Figure 7: Recovered depth map of the scene patch at various noise levels. We only consider
the direct illumination component in this 3D reconstruction.

Figure 8: Recovered depth map of the scene patch at various noise levels. We consider
both direct and global illumination component in this 3D reconstruction. If you zoom into
the depth scale it it evident that there is an absolute depth offset caused by the global
illumination residual signal.
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Direct Illumination Global Illumination

Figure 9: Mean absolute depth error of the recovered 3D reconstructions under direct (left)
and direct+global (right) illumination of the 40x40 scene patch. The source strength is
fixed while the ambient illumination strength is increased.
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4.2. Bedroom Results110

Figures 10 and 11 show the reconstructed depth maps for the full bedroom111

scene at various noise levels for direct and for direct and global illumination.112

As the noise is increased all the coding schemes are slightly affected, how-113

ever, it is evident that cosine is the one less robust to high noise levels.114

The performance of all coding schemes also degrades on scene pixels with115

low reflectivity. Figure 12 shows the mean absolute depth errors of the 3D116

reconstruction obtained by each coding scheme.117

Figure 10: Recovered depth map of the bedroom at various noise levels. We only consider
the direct illumination component in this 3D reconstruction.
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Figure 11: Recovered depth map of the bedroom at various noise levels. We consider both
direct and global illumination component in this 3D reconstruction. Scene pixels with low
reflectivity correspond to the noisier parts of the scene.

Direct Illumination Global Illumination

Figure 12: Mean absolute depth error of the recovered 3D reconstructions under direct
(left) and direct+global (right) illumination of the full bedroom scene.
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5. Discussion118

Direct Illumination: As expected in the direct illumination simu-119

lations the hamiltonian coding schemes outperform sinusoidal coding at all120

noise levels. At high noise the geometry of the scene patch in Figure 7 is121

completely gone for the cosine coding, but the Hamiltonian coding schemes122

are still able to recover it. For the full bedroom scene at medium noise all123

coding schemes seem to start giving highly noisy depth maps in some regions.124

This is likely due to low reflectivity at at those locations.125

Global Illumination: In the global illumination simulations we find126

that the variance of the recovered depth map is reduced compared to the127

direct only simulations. This is due to the fact that if we take into account128

the global component we are also taking into account more signal. This129

means that we will measure a stronger signal and effectively increasing the130

overall signal to noise ratio. More interestingly, is the fact that depth error131

due to noise plays a very small role when compared to the error caused by the132

global illumination component. Figures 9 and 12 demonstrate this dominance133

because the mean depth error seems to stay constant as we increase the noise134

levels. Surprisingly, even though the hamiltonian coding schemes were not135

designed to be robust to global illumination they still consistently outperform136

cosine coding. This could potentially be due to the higher frequencies used137

in these schemes. Previous work has shown that some global illumination138

effects disappear when the coding functions use high frequencies [1].139
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