
CHRONO::HPC
DISTRIBUTED MEMORY FLUID-SOLID INTERACTION

SIMULATIONS

Felipe Gutierrez, Arman Pazouki, and Dan Negrut
University of Wisconsin – Madison

Support: Rapid Innovation Fund, U.S. Army TARDEC

ASME IDETC/CIE 2016 :: Software Tools for Computational Dynamics in Industry and Academia
Charlotte, North Carolina :: August 21 –24, 2016

Motivation

2Chrono::HPC2/28/2017

The Lagrangian-Lagrangian framework

• Based on the work behind Chrono::FSI

• Fluid
• Smoothed Particle Hydrodynamics (SPH)

• Solid
• 3D rigid body dynamics (CM position, rigid rotation)

• Absolute Nodal Coordinate Formulation (ANCF) for flexible bodies (nodes location and slope)

• Lagrangian-Lagrangian approach attractive since:
• Consistent with Lagrangian tracking of discrete solid components

• Straightforward simulation of free surface flows prevalent in target applications

• Maps well to parallel computing architectures (GPU, many-core, distributed memory)

• A Lagrangian-Lagrangian Framework for the Simulation of Fluid-Solid Interaction Problems with Rigid
and Flexible Components, University of Wisconsin-Madison, 2014

32/28/2017 Chrono::HPC

Smoothed Particle Hydrodynamics (SPH) method

2/28/2017 Chrono::HPC 4

a

b

abr

W

h

S

Kernel Properties

• “Smoothed” refers to

• “Particle” refers to

• Cubic spline kernel (often used)

SPH for fluid dynamics

• Continuity

• Momentum

• In the context of fluid dynamics, each particle carries fluid properties like pressure, density, etc.

• Note: The above sums are done for millions of particles.

5Chrono::FSI2/28/2017

Fluid-Solid Interaction (ongoing work)

Boundary Condition Enforcing (BCE) markers for no-slip condition

• Rigidly attached to the solid body (hence their velocities are those of the corresponding material points on the
solid)

• Hydrodynamic properties from the fluid

2/28/2017 Chrono::HPC 6

Rigid bodies/walls Flexible Bodies

Example Representation

Current SPH Model

• Runge-Kutta 2nd order
• Requires force calculation to happen twice per step

• Wall Boundary
• Density changes for boundary particles as you

would for the fluid particles.

• Periodic Boundary Condition
• Markers who exit the periodic boundary, enter

from the other side

2/28/2017 Chrono::HPC 7

Periodic boundary

Fluid marker

Boundary marker

Ghost marker

Challenges for Scalable Distributed Memory Codes

• SPH is a computationally expensive method, hence, high performance computing (HPC) is necessary.

• High Performance Computing is hard.
• MPI codes are able to achieve good strong and weak scaling, but… the developer is in charge of making this

happen.

• Distributed memory challenges:
• Communication bottlenecks > Computation bottlenecks

• Load imbalance

• Heterogeneity: processor types, process variation, memory hierarchies, etc.

• Power/Temperature (becoming an important)

• Fault tolerance

• To deal with these, we would like to seek
• Not full automation

• Not full burden on app-developers

• But: a good division of labor between the system and app developers

2/28/2017 Chrono::HPC 8

Solution: Charm++

• Charm++ is a generalized approach to writing parallel programs
• An alternative to the likes of MPI, UPC, GA etc.

• But not to sequential languages such as C, C++, and Fortran

• Represents:
• The style of writing parallel programs

• The runtime system

• And the entire ecosystem that surrounds it

• Three design principles:
• Overdecomposition, Migratability, Asynchrony

2/28/2017 Chrono::HPC 9

Charm++ Design Principles

Overdecomposition

• Decompose work and data units
into many more pieces than
processing elements (cores,
nodes, …).

• Not so hard: problem
decomposition needs to be done
anyway.

2/28/2017 Chrono::HPC 10

Migratability

• Allow data/work units to be
migratable (by runtime and
programmer).

• Communication is addressed to
logical units (C++ objects) as
opposed to physical units.

• Runtime System must keep track
of these units

Asynchrony

• Message-driven execution
• Let the work unit that happens

to have data (“message”)
available execute next.

• Runtime selects which work
unit executes next (user can
influence) Scheduling

Realization of the design principle in Charm++

• Overdecomposed entities: chares
• Chares are C++ objects

• With methods designated as “entry” methods
• Which can be invoked asynchronously by remote chares

• Chares are organized into indexed collections
• Each collection may have its own indexing scheme

• 1D, ..7D

• Sparse

• Bitvector or string as an index

• Chares communicate via asynchronous method invocations: entry methods
• A[i].foo(….); A is the name of a collection, i is the index of the particular chare.

• It is a kind of task-based parallelism
• Pool of tasks + pool of workers

• Runtime system selects what executes next.

2/28/2017 Chrono::HPC 11

Charm-based Parallel Model for SPH

• Hybrid decomposition (domain + force)
• Inspired by NaMD (molecular dynamics application)
• Domain Decomposition: 3D Cell Chare Array.

• Each cell contains fluid/boundary/solid particles.

• Data Units

• Indexed: (x, y ,z)

• Force decomposition: 6D Compute Chare Array
• Each compute chare is associated to a pair of cells.

• Work units.

• Indexed (x1, y1, z1, x2, y2, z2)

• No need to sort particles to find neighbor particles
(overdecomposition implicitly takes care of it).

• Similar decomposition to LeanMD.
• Charm++ Molecular Dynamics mini-app.

• Kale, et al. “Charm++ for productivity and performance”. PPL Technical
Report, 2011.

2/28/2017 Chrono::HPC 12

Algorithm (Charm-based SPH)

1. Init each Cell Chare (very small subdomains)

2. For each subdomain create the number of Compute Chares

2/28/2017 Chrono::HPC 13

The following instructions happen in parallel for each Cell/Compute Chare.

Cell Array Loop (For each time step) Compute Array Loop (For each time step)

3. SendPositions to each associate compute chare 4. When calcForces → SelfInteract OR Interact

6. Reduce forces from each compute chare 5. Send resulting forces

7. When reduce forces update properties at halfStep

Repeat 3-7, but calc forces with marker properties at half step.

8. Migrate Particles to Neighbors

9. Load Balance every n steps

Charm-based Parallel Model for FSI (ongoing work)

• Particles representing the solid will be contained with the fluid and boundary particles.

• Solid Chare Array (1D Array)
• Particles keep track of the index of the solid they are associated with.

• Once computes are done they send a message (invoke an entry method) to each solid they have
particles of.

• Do a force reduction and calculate the dynamics of the solid.

2/28/2017 Chrono::HPC 14

Charm++ In Practice
• Achieving optimal decomposition granularity

• Average number of markers allowed per subdomain = Amount of work per chare.

• Make sure there is enough work to hide communications.

• Way too many chare objects is not optimal Memory + Scheduling overheads

• Hyper Parameter Search
• Vary Cell Size Changes total number of cells and computes.

• Vary Charm++ nodes per physical node → Feed comm network at max rate.

• Varies number of communication and scheduling threads per node.

• System specific. Small clusters might only need a single Charm++ node (1 communication thread), but larger
clusters with different configurations might need more)

2/28/2017 Chrono::HPC 15

Charm++ Nodes\CellSize 2 * h 4 * h 8 * h

aprun -n 8 -N 1 -d 32 ./charmsph +ppn 31 +commap 0 +pemap 1-31
Average times per time step

aprun -n 16 -N 2 -d 16 ./charmsph +ppn 15 +commap 0,16 +pemap 1-15:17-31

aprun -n 32 -N 4 -d 8 ./charmsph +ppn 7 +commap 0,8,16,24 +pemap 1-7:9-15:17-23:25-31

Results: Hyper parameter Search

2/28/2017 Chrono::HPC 16

• Hyper parameter search for optimal cell size and Charm++ nodes per physical node.
Nodes denotes physical nodes (64 processors per node), and h denotes the particle
interaction radius.

• H = Interaction radius of SPH particles.
• PE = Charm++ node (equivalent to MPI rank).

Results: Strong Scaling

2/28/2017 Chrono::HPC 17

• Speeups calculated with respect to an 8 core run (8-504 cores).

Results: Dam break Simulation

2/28/2017 Chrono::HPC 18

Figure 3: Dam break simulation (139,332 SPH Markers).

Note: Plain SPH requires hand tuning for stability.

Future Work (a lot to do)

• Improve the current SPH model following the same communication patterns for kernel calculations
• Density Re-initialization.

• Generalized Wall Boundary Condition
• Adami, S., X. Y. Hu, and N. A. Adams. "A generalized wall boundary condition for smoothed particle hydrodynamics." Journal of Computational

Physics231.21 (2012): 7057-7075.

• Pazouki, A., B. Song, and D. Negrut. "Technical Report TR-2015-09." (2015).

• Validation

• Hyper parameter search and scaling results on larger clusters.
• Some bugs in HPC codes only appear after 1,000+ or 10,000+ cores.

• Performance+scaling comparison against other distributed memory SPH codes.

• Fluid-Solid Interaction
• A. Pazouki, R. Serban, and D. Negrut, A Lagrangian-Lagrangian framework for the simulation of rigid and deformable bodies in fluid,

Multibody Dynamics: Computational Methods and Applications, ISBN: 9783319072593, Springer, 2014.

2/28/2017 Chrono::HPC 19

Thank you!

Questions?

Code available at: https://github.com/uwsbel/CharmSPH

2/28/2017 Chrono::HPC 20

https://github.com/uwsbel/CharmSPH

