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Abstract

Single-photon avalanche diodes (SPADs) are an emerg-
ing pixel technology for time-of-flight (ToF) 3D cameras
that can capture the time-of-arrival of individual photons at
picosecond resolution. To estimate depths, current SPAD-
based 3D cameras measure the round-trip time of a laser
pulse by building a per-pixel histogram of photon times-
tamps. As the spatial and timestamp resolution of SPAD-
based cameras increase, their output data rates far ex-
ceed the capacity of existing data transfer technologies.
One major reason for SPAD’s bandwidth-intensive oper-
ation is the tight coupling that exists between depth reso-
lution and histogram resolution. To weaken this coupling,
we propose compressive single-photon histograms (CSPH).
CSPHs are a per-pixel compressive representation of the
high-resolution histogram, that is built on-the-fly, as each
photon is detected. They are based on a family of linear
coding schemes that can be expressed as a simple matrix
operation. We design different CSPH coding schemes for
3D imaging and evaluate them under different signal and
background levels, laser waveforms, and illumination se-
tups. Our results show that a well-designed CSPH can con-
sistently reduce data rates by 1-2 orders of magnitude with-
out compromising depth precision.

1. Introduction

Single-photon cameras (SPC) are an emerging sensor
technology with ultra-high sensitivity down to individual
photons [8, 10]. In addition to their extreme sensitivity,
SPCs based on single-photon avalanche diodes (SPADs)
can also record photon-arrival timestamps with extremely
high (sub-nanosecond) time resolution [45]. Moreover,
SPAD-based SPCs are compatible with the complemen-
tary metal-oxide semiconductor (CMOS) photolithography
process which can enable fabrication of kilo-to-mega-pixel
resolution SPAD arrays [13, 41] at low costs. Due to
these capabilities, SPAD-based SPCs are gaining popu-
larity in various imaging applications including 3D imag-
ing [15, 51, 52, 60], passive low-light imaging [3, 39, 55],
HDR imaging [30, 31], non-line-of-sight (NLOS) imag-
ing [5, 37, 65], fluorescence lifetime imaging (FLIM) mi-
croscopy [68], and diffuse optical tomography [38, 67].

Unlike a conventional camera pixel that outputs a single
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Figure 1. Compressive Single-Photon 3D Imaging. (a) Example
depth maps with conventional (full histogram) capture, coarse res-
olution capture and our method with compressive capture. In this
simulation, our method generates 100× lower data, yet generates
depth maps that are visually indistinguishable from the conven-
tional method. (b) With conventional acquisition schemes, data
bandwidth requirements scale linearly with the desired depth res-
olution. Our proposed compressive acquisition does not scale as
strongly with depth resolution, keeping the output data rates man-
ageable with existing data transfer standards like USB and PCIe.

intensity value integrated over micro-to-millisecond time-
scales, a SPAD pixel generates an electrical pulse for each
photon detection event. A time-to-digital conversion circuit
converts each pulse into a timestamp recording the time-of-
arrival of each photon. Under normal illumination condi-
tions, a SPAD pixel can generate millions of photon times-
tamps per second. The photon timestamps are often cap-
tured with respect to a periodic synchronization signal gen-
erated by a pulsed laser source. To make this large volume
of timestamp data more manageable, SPAD-based SPCs
build a timing histogram in-sensor instead of transferring
the raw photon timestamps to the processing chip. The his-
togram records the number of photons as a function of the
time delay with respect to the synchronization pulse.

Consider a megapixel SPAD-based 3D camera. For short
range indoor applications (up to tens of meters), a millime-
ter depth resolution would be desirable. For longer range



outdoor applications (hundreds of meters), centimeter level
depth resolution would be desirable. Assuming state-of-the-
art sub-bin processing techniques [23], this corresponds to
histograms with thousands of bins per pixel. Moreover, the
rate at which these histograms are acquired can vary from
tens of frames per second (fps) for low speed applications
to hundreds of fps for, say, an automotive application where
objects may be moving at high speeds. Even a conservative
estimate of a 30 fps megapixel camera leads to a large data-
rate of 106 pixels/frame × 1000 bins/pixel × 2 bytes/bin ×
30 fps = 60 GB/sec. As shown in Fig. 1(b), the amount
of data generated by this conventional full histogram cap-
ture method varies linearly with the desired depth resolution
and exceeds the bandwidth of state-of-the-art data-transfer
busses (like USB and PCIe) by orders of magnitude.

In this paper we propose a bandwidth-efficient acquisi-
tion strategy called compressive single-photon histograms
(CSPH). Instead of capturing the full timing histogram in
each pixel, a CSPH is constructed by mapping the time
bins of the full histogram onto multiple “compressive bins”
through an encoding step. We consider a family of com-
pressive encoders that are linear, which means they can be
represented as a simple matrix operation. Therefore, they
can be implemented efficiently using vector addition oper-
ations that can be computed on-the-fly, as each photon ar-
rives, without the need to store large arrays of photon times-
tamps in-sensor. CSPHs decouple the dependence of out-
put data rate on the desired depth resolution. While a full
histogram would require more time bins to achieve higher
depth resolution, a CSPH can represent them using (almost)
the same number of compressive bins. As illustrated in
Fig. 1(a), CSPHs can reduce the required data rate by 1-2
orders of magnitude compared to the full histogram case.

We design and evaluate various CSPH coding schemes
for SPAD-based 3D cameras. We propose a general decod-
ing algorithm that directly estimates per-pixel scene depths
from a CSPH, based on recent work in structured light [40].
Our method also accounts for different laser pulse shapes
and pixel response characteristics, i.e., the system’s impulse
response function (IRF). We perform extensive simulations
over a wide range of background and signal powers, laser
waveform shapes and illumination schemes. We also evalu-
ate depth reconstruction accuracy of our compressive acqui-
sition method with real-world data captured using a single-
pixel raster-scanning hardware prototype.

2. Related Work
Coarse in-pixel histogramming is one common strategy

to reduce data rates in SPAD-based 3D cameras [9, 23, 28,
29, 53]. Despite the low time resolution in coarse his-
tograms, it is possible to achieve high depth resolution by
using wide pulses [23], pulse dithering [49], or with coarse-
to-fine histogram architectures [66]. In this paper, we
show that coarse histogramming is sub-optimal compared

to other compressive histogramming strategies. Additional
data reduction strategies, such as motion-driven operation
[9] or multi-photon triggering [29], have also been pro-
posed. Moreover, in the context of scanning-based systems,
adaptive sampling methods have been proposed to reduce
sampling rates and consequently data transfers [4, 25, 48].
These more complex methods can be used in a complemen-
tary manner with CSPHs to further reduce data rates.

Recently, Fourier-domain histograms (FDHs), were pro-
posed for fast NLOS reconstruction [36, 42] and for single-
photon 3D imaging [56, 57]. FDHs are one type of CSPHs
that can achieve significant compression over regular his-
togramming [56]. In this paper, we present CSPH strategies
that are not only more efficient than FDH for 3D imaging,
but are also robust to diffuse indirect reflections commonly
found in flash illumination systems.

Coding matrix design for 3D imaging has been studied
in the context of correlation-based ToF (C-ToF) [19, 20, 22,
32, 33, 61] and structured light (SL) [6, 17, 18, 40]. In par-
ticular, there are interesting similarities between CSPH and
C-ToF coding matrices, since both 3D cameras are based
on the time-of-flight principle. Nonetheless, C-ToF coding
is fundamentally different. In C-ToF, each coded measure-
ment is captured sequentially with a coded light signal and
sensor, making the noise statistics across measurements in-
dependent. In CSPHs, all coded projections are performed
simultaneously on the same signal, making the noise statis-
tics across projections dependent.

3. Single-Photon 3D Image Formation

Single-photon 3D cameras consist of a SPAD sensor and
a periodic pulsed laser that illuminates the scene. Assuming
direct-only reflections, the returning photon flux signal that
will be captured by a SPAD pixel can be written as:

Φ(t) = ah(t− tz) + Φbkg = Φsig(t) + Φbkg (1)

where h(t) is the system’s IRF which accounts for the pulse
waveform and sensor IRF, a represents the returning sig-
nal photon flux, tz is a time shift proportional to distance,
and Φbkg corresponds to the background photon flux. Al-
though simple, Eq. 1’s model is a valid approximation in a
wide variety of active illumination scenarios, in particular,
for scanning systems [1].

SPAD-based 3D cameras sample Φ(t) using time-
correlated single-photon counting (TCSPC) [45, 66]. The
SPAD pixel, once triggered, starts acquiring photons. Af-
ter detecting one photon, the photon timestamp is recorded,
and the SPAD is inactive for a time period called the dead
time (∼50ns). As shown in Fig. 2, the above process is
repeated for M cycles, and a histogram of the timestamps
is constructed which approximates Φ(t). If the photons are
time-tagged with a resolution, ∆, we can write the mean
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Figure 2. Single-Photon Histogram Formation. SPAD-based
3D cameras estimate distances by building a per-pixel histogram
of the detected photons time-of-arrival. The histogram is a discrete
approximation of the photon flux waveform incident on the pixel,
which encodes distances in the time shift (tz) of the pulse.

photon flux at histogram bin i as:

Φi = Φsig
i +∆Φbkg (2)

The vector, Φ = (Φi)
N−1
i=0 , is the photon flux waveform his-

togram, where N = τ/∆, and τ is the timestamp range
which often equals the laser pulse repetition period. Here
we assume that the SPAD sensor is being operated in asyn-
chronous mode [15] or is capable of multi-event times-
tamp collection [23], which minimizes pile-up distortions
[16, 26, 44], and guarantees that Φi is an appropriate ap-
proximation of Φ(t).

The histogram formation process generates a 3D his-
togram image, one histogram per pixel. In emerging
megapixel SPAD arrays with picosecond time resolutions,
building the histogram image off-sensor requires transfer-
ring thousands of timestamps per-pixel, leading to TB/s data
rates. Moreover, building in-pixel histograms, would still
require transferring the 3D data volume off-sensor for pro-
cessing, which still results in impractical data rates of tens
of GB/s. Overall, data bandwidth is an important practical
challenge for emerging single-photon 3D cameras.

4. Compressive Single-Photon Histograms
In general, we could compress the 3D histogram image

effectively if we had the entire histogram image. However,
building and transferring the histogram image off the sen-
sor is expensive. This raises the question, can we compress
a histogram without ever explicitly constructing it? Recall
that these histograms are created one photon at a time, rais-
ing the follow-up question: Can we compress the histogram
in an online fashion where we see a photon (and its timing
information) only once? This is challenging because com-
pression schemes often require having access to the entire

data before performing compression.
To answer the above question, we make two key observa-

tions. First, there is a class of linear compression techniques
which can be expressed as a simple matrix-vector multipli-
cation. Specifically, the compressed representation is the
product of a K × N coding matrix, C, and the N × 1 his-
togram Φ. The effectiveness of C can be measured by the
compression ratio (N/K) that is achieved, while preserving
down-stream task (e.g., depth estimation) performance.

Second, we observe that the entire histogram can be writ-
ten as the sum of several one-hot encoding vectors, each
vector representing one timestamp. Formally, let tj =

(tj,i)
N−1
i=0 be the one-hot encoding vector of the jth photon

timestamp (Tj) detected, where all elements are 0 except
for tj,l = 1, in which l = ⌊Tj mod τ

∆ ⌋. As illustrated in Fig.
3, the measured histogram, Φ̂, can be written as:

Φ̂i =

M−1∑
j=0

tj,i (3)

where M is the total number of detected photons.
Given these observations, we can design an online his-

togram compression algorithm by simply multiplying the
coding matrix with the one-hot encoding timestamp vector:

B̂k =

N−1∑
i=0

Ck,iΦ̂i =

N−1∑
i=0

M−1∑
j=0

Ck,itj,i (4)

B̂ is the compressive single-photon histogram (CSPH),
whose elements are coded projections of Φ̂.

Although, Eq. 4 is expressed as a matrix-vector multi-
plication, a practical CSPH implementation would perform
low-compute operations, per-photon, like conventional his-
tograms. One possible implementation is to store C as a
lookup table shared across pixels. For each new tj with
tj,l = 1, the lth column of C is added to the per-pixel CSPH
(B̂ = B̂ + C:,l). Note that we never need to store the tim-
ing information explicitly, nor need to create the histogram.
The only data stored and output by the compressive SPAD
pixel is B̂. Given this on-the-fly compression method, a
natural question is, what are good coding matrices for com-
pressive single-photon 3D cameras?

4.1. How to design a coding matrix for 3D Imaging?

In theory, C can be chosen to be any set of K linear pro-
jections. In practice, however, we can define certain proper-
ties C should have to achieve high compression rates while
preserving 3D imaging performance.

The ith column of C can be interpreted as a code word
of length K that represents the ith time bin. We can view
this code word vector as a point in a K-dimensional space.
Moreover, consider the curve that is traced by the N points
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Figure 3. On-the-fly Histogram Formation. Single-photon timestamp histograms are often generated on-the-fly, as each photon times-
tamp comes in. The left column shows how a histogram, whose bin width matches the timestamp resolution (∆), is formed as the sum of
timestamps represented as one-hot encoded vectors. Transferring such a large histogram for every pixel can be impractical. By multiplying
each timestamp with a down-sampling matrix to group timestamps into coarser bins, the size of the histogram can be reduced at the cost
of resolution (middle column). Alternatively, as shown in the right column, a compressive histogram can be created by multiplying each
timestamp with a coding matrix and adding them up as each photon timestamp comes in. A well-designed coding matrix can efficiently
encode the location of the peak from which distance can be computed.
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Truncated Fourier Coding 𝐾 = 12 Gray-based Fourier Coding 𝐾 = 12

Figure 4. Example Coding Matrices. Truncated Fourier and
Gray-based Fourier matrices with 12 codes (rows). The odd and
even rows of the truncated Fourier matrix are given by cos( 2πfi

N
)

and sin( 2πfi
N

), respectively, where f = ⌈0.5k⌉, 1 < k < K, and
i is the column. The odd and even rows of the Gray-based Fourier
matrix are given by cos( 2π2f−1i

N
) and sin( 2π2f−1i

N
), respectively,

and for k > log2(N) the rows are generated using codes from the
truncated Fourier matrix that have not been used.

(columns of C), denoted as the coding curve C. In this sec-
tion, we make use of the coding curve concept to define
desirable properties of C. We would like to note that the
coding curve construct has been previously used for other
active imaging systems including: C-ToF [20, 22], SL [18],
and FLIM [34]. A “good” compressive single-photon 3D
imaging coding matrix will have the following properties:

Uniqueness Property: Each point in C is unique, i.e., C
should be non self-intersecting. This guarantees that two
different bins are not represented by the same code word.

Robustness Property: C should be locality preserving.
Meaning that if we add a small perturbation to a point on the
curve, it should map to neighboring points along the curve,
which correspond to code words with similar time bins.

Indirect Reflections Property: The coding functions
(rows of C) encode information of the photon flux wave-
form in a similar way as correlation functions do in C-ToF
imaging [19,20]. In the presence of diffuse indirect light re-
flections, the direct-only model from Eq. 1 becomes invalid.
Diffuse indirect reflections arise when imaging concave ge-
ometries or in the presence of volumetric scattering, and

is particularly problematic in flash illumination systems.
Gupta et al. [19] showed that diffuse indirect reflections ap-
pear in Φ(t) as smooth band-limited signals. Therefore, the
direct-only model will still apply for coding functions with
frequencies above a scene dependent threshold.
Band-limit Property: The coding functions should not all
be high-frequency functions when the goal is to encode a
photon flux waveform with a smooth system IRF (h(t)).
This is because if a given coding function is composed of
frequencies that are above the bandwidth of h(t), then the
expected encoded value will be 0 (see supplement). The
orange and green lines of Fig. 5 show example of smooth
IRF’s. This means that, although, high frequencies can miti-
gate indirect reflections, very high frequency codes may not
be useful if they are outside of h(t) bandwidth.

4.2. CSPH Coding Schemes
In this paper, we analyze and evaluate the following

CSPH coding matrices:
1. Coarse Histogram: C is a downsampling matrix, where

each row is a rectangular window with length N/K, as
shown in Fig. 3. This matrix does not fulfill the unique-
ness property because each window maps multiple bins
to the same code word vector. This type of CSPH is
equivalent to the commonly used coarse in-pixel his-
tograms [9, 28, 29, 53].

2. Truncated Fourier [56]: C is made up of the first K
rows of the discrete Fourier transform matrix, skipping
the zeroth harmonic. This matrix fulfills the uniqueness
property, and at higher K it may contain high frequency
codes that can mitigate indirect reflections.

3. Continuous Gray (Proposed) : Also known as Hamil-
tonian codes [20], the Cont. Gray coding curve is
a Hamiltonian cycle on a K-dimensional hypercube,
which is provably locality preserving (robustness prop-
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Figure 5. System Impulse Response Functions (h(t)). Gaussian
pulses are commonly used approximations used for the system IRF
because the single-photon 3D cameras use pulsed illumination sig-
nals. Although this approximation may be valid for some systems,
the experimental system used for the results in Sec. 6.1 exhibited
an IRF with a long-tail (green line). Analyzing the frequency-
domain representation of the IRF is a useful step when designing
the coding matrix of a compressive single-photon 3D camera.

erty) [12]. The rows of C are generated by constructing
K-bit Gray code [14], where each code will have length
2K , and linearly interpolating them to have length N .
For a histogram of length N = 2K this coding matrix be-
comes fully binary. Fig. 3 shows a Gray C with K = 8.

4. Gray-based Fourier (Proposed): For N histogram
bins, Gray coding is only valid for K ≤ log2(N) be-
cause the higher-order coding functions start aliasing.
However, in lower SNR scenarios it is sometimes desired
to increase K to preserve depth precision. To this end,
we design a new coding scheme that combines properties
of Gray and Fourier coding. For the first k ≤ 2 log2(N)
rows, Fourier components are sampled using the fre-
quency doubling pattern observed in the Gray coding
matrix in Fig. 3. For the remainder 2 log2(N) < k < K
codes, we revert back to a truncated Fourier sampling
using the remaining frequencies.

In the supplement we present further analysis on the proper-
ties of these coding matrices, and evaluate additional coding
schemes including: Hadamard and short-time Fourier.

5. When is isometric compression achieved?
A CSPH achieves isometric compression when its per-

formance is within a specified margin of the uncompressed
full-resolution histogram (FRH). Specifically,

IsometricCompression(ϵ) := εdiff ≤ ϵ (5)

where εdiff = |εFRH − εCSPH|, εFRH and εCSPH are the perfor-
mance metrics for a CSPH and a FRH, and ϵ is the desired
performance difference margin.

To quantify 3D imaging performance, we compute the
relative mean depth errors (MDE) over the depth range
through Monte Carlo simulations using Eq. 1’s direct-only
model, as in [22] (see supplement). Consequently, to iden-
tify isometric compression we take the difference between
the relative MDE of a FRH (εFRH) and the CSPH (εCSPH)
and classify the difference into different margins. For con-
text, in a 3D imaging scenario with a 10m depth range, a

relative MDE difference of εdiff = 0.1% corresponds to the
CSPHs MDEs being within 1cm of the FRH MDEs.
Depth Estimation: To decode depths from a CSPH,
we compute the zero-mean normalized cross-correlation
(ZNCC) [40] between B̂ and C:

t̂z ∝ argmax
i

Ch
:,i −mean(Ch

:,i)∥∥Ch
:,i −mean(Ch

:,i)
∥∥ · B̂ −mean(B̂)∥∥∥B̂ −mean(B̂)

∥∥∥ (6)

where Ch
:,i is the ith column of Ch, and Ch is the coding

matrix, C, with each row convolved with the system IRF h.
To compute depths for FRHs we use matched filtering [63].
See supplement for more details on ZNCC depth estimation.

5.1. Isometric Compression Analysis
A high-performance single-photon 3D imaging system

will match the laser pulse width with the SPAD sensor time
resolution (∆) [23,24]. In this section, we analyze isometric
compression at a wide range of signal-to-background ratio
(SBR) and photon count levels1, for the case of a FRH with
N = 1024 bins that records a Gaussian pulse of width ∆,
i.e., h(t) ∝ exp−(t)2/∆ (blue line in Fig. 5). In addition to
the CSPH coding schemes from Sec. 4.2, we also evaluate
the following two baselines:
• Coarse Hist. (Wide Pulse) [23]: A coarse histogram C

paired with a wide Gaussian pulse width that matches the
window length, which enables sub-bin precision.

• Truncated Timestamps: A FRH constructed with at
most K timestamps, even if the number of detected pho-
tons is > K. Although, not a CSPH, this is an important
baseline corresponding to the simplest SPAD pixel that
transfers the same amount of data as a size K CSPH.

Extreme Compression: Fig. 6a shows the relative mean
and median depth errors for different CSPH with K = 8,
resulting in a compression ratio of 128x. The ideal FRH,
obtains near 0 error in the visualized SBR and photon count
levels. In this extreme compression regime, Gray coding
is the only CSPH that achieves an isometric compression
where, εdiff ≤ 0.01%, at various SBR and photon count
levels, essentially matching FRH performance (Fig. 6b).
The difference in the mean and median error trends indi-
cates that at low SBR and low photon counts, Gray coding
produces either high or near zero errors. On the other hand,
the error magnitudes of truncated Fourier coding are similar
across SBR and photon count levels. Unfortunately, even
at high SBR levels, truncated Fourier still does not each
isometric compression with εdiff ≤ 0.01%. Gray-based
Fourier coding consistently outperform truncated Fourier,
and is more robust to outliers than Gray coding at low SBR.
As expected, the coarse histogramming methods are either,
quantization-limited due to low time resolution, or noise-
limited when using a wide pulse. Finally, only transferring

1SBR =
∑N−1

i=0 Φ
sig
i

N∆Φbkg , Photon Counts =
∑N−1

i=0 Φi
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Figure 6. Isometric Compression Analysis at 128x Compression. (a) Shows the relative mean and median depth errors computed as
described in Sec. 5. At this high compression level, where CSPH methods use K = 8 codes, only the Gray-based and Fourier-based
CSPHs achieve low errors at a wide range of SBR and photon count levels. For a fixed SBR and photon counts, the mean and median
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relative MDE difference of truncated Fourier and Gray coding with the ideal FRH. At SBR ≥ 0.1 and photon counts ≥ 1000 these CSPHs
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methods. For SBR and photon count levels greater than ∼ 0.1 and
∼ 1000, Gray-based Fourier coding with K ≥ 16 performs as
well as a FRH with N = 1024. Truncated Fourier Coding, on the
other hand, requires higher K to reach a εdiff ≤ 0.01% at those
SBR and photon count levels. Overall, carefully designed coding
matrices such as Fourier and Gray-based, consistently outperform
standard approaches (coarse histograms and timestamp transfer).

8 timestamps, although practical, leads to poor performance
at low SBR and to many outliers at high SBR.

Compression vs. Performance: Fig. 7 shows how the iso-
metric compression contours change as we increase K for
different coding schemes. As K increases and compres-
sion decreases, the performance of all methods improves
and approaches FRH performance, in particular for care-
fully designed CSPH coding schemes like Gray-based and

truncated Fourier. At K ≤ 64 the benefits of Gray-based
Fourier coding are more evident as the isometric contours
where its performance matches FRH covers the biggest
range of SBR and photon count levels (i.e., εdiff ≤ 0.01%).
As K continues to increase, the truncated and Gray-based
Fourier coding matrices become similar, making their per-
formance nearly identical, as observed in the K = 128 case.
Overall, Gray-based and Fourier-based CSPH coding, con-
sistently outperform current photon timestamp storage and
transfer approaches, i.e., coarse histograms and direct trans-
fer of timestamps. Interestingly, transferring only K times-
tamps significantly outperforms a coarse histogram at many
SBR and photon count levels.
Isometric Compression with Wide Pulses: Here we ana-
lyzed CSPHs for a Gaussian pulse of width ∆. As the pulse
width increases, the effective time resolution of the system
decreases, impacting the performance of the FRH baseline,
which makes the isometric compression regions with low
relative differences become larger at lower K. Moreover,
as seen in Fig. 5, slightly widening the pulse decreases the
frequency content of the signal significantly, making com-
pressive coding strategies more efficient because they only
need to sample the non-zero frequencies. Please refer to the
supplement for results and analysis using wider pulses.

6. Compressive Single-Photon 3D Imaging
In this section, we evaluate CSPH coding approaches

on real-world data from a scanning-based system [15], and
simulated data from a flash-illuminated system.

6.1. Real-world Scanning-based System Results
To evaluate the effectiveness of CSPHs on real SPAD

timestamp data we downloaded and pre-processed the data
acquired with a scanning-based system [15]. The pre-
processed raw histograms have ∆ = 8ps and N = 832
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Figure 8. Real-world Scan-based Single-photon 3D Imaging.
The depth and depth error images for different CSPH with K = 8
codes. The mean and median absolute errors (in mm) achieved by
each method from left to right are: [7, 1], [6, 4], [9, 6], [23, 13].

(e.g., histograms in Fig. 8). For depth estimation we extract
the center pixel histogram, denoise it, and use that as the
system IRF (green line in Fig. 5). Ground truth depths are
obtained from the FRH with light Gaussian denoising, and
we mask the pixels where even FRH had too low of an SBR
to estimate reliable depths (white regions in Fig. 8 images).

Fig. 8 shows the recovered 3D reconstructions using dif-
ferent CSPH at a CR = 104x (K = 8). Similar to our sim-
ulations, we find that Gray coding can essentially achieve
0 errors for pixels with sufficient signal, while sometimes
making large errors (outliers). In contrast, truncated Fourier
and Gray-based Fourier are robust to outliers, but make
many small and medium sized errors leading to lower qual-
ity 3D reconstructions in this example. Moreover, we found
that the background wall histograms exhibited a longer tail
than the foreground face histograms due to indirect reflec-
tions (see supplement). Indirect reflections cause system-
atic errors in truncated Fourier, while Gray-based Fourier
and Gray coding are more robust to these errors since their
C have higher frequency coding functions, as discussed in
Sec. 4.1. Finally, the wide system IRF allows a coarse his-
togram to achieve sub-bin precision using ZNCC decoding.
Nonetheless, its performance is significantly worse than the
other CSPH methods. Additional results at different K and
another scan can be found in the supplement.

6.2. Simulated Flash Illumination System Results
SPAD arrays are often used in flash illumination systems

to achieve a fully solid-state single-photon LiDAR [23]. To

In-Pixel
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In-Pixel
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In-Pixel
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Per-pixel
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Depth
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High
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O(N)
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Coarse Hist.
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O(K)
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CSPH (Proposed)
(Off-sensor Depth Est.)

Medium
O(K)

High
O(K)

Low
(None)

Medium
O(K)

Medium

Table 1. SPAD-based 3D Camera Design Trade-offs. Qualita-
tive comparison of the memory, compute, and data rate require-
ments for different SPAD-based 3D camera designs.

evaluate CSPHs in a flash illumination system, we used
physically accurate histogram images rendered with Mit-
subaToF [44] (∆ = 50ps, N = 2000) obtained from [21].
To simulate the FRHs we set the mean photon count and
mean SBR levels for the scene, and scale the histogram and
background image (R channel of RGB) accordingly.

Fig. 9 shows the resulting depth images and depth errors
for two different scenes. In addition to the edges where true
depth is ambiguous, both scenes have regions with very low
SBR where even the FRH has some depth errors (stove in
kitchen, and the mat in bathroom). Due to indirect reflec-
tions, truncated Fourier makes significant systematic errors
even when using K = 40 codes. On the other hand, Gray-
based Fourier recovers highly accurate depths like an FRH,
while using 50-100x less data. Please refer to the supple-
ment for additional comparisons.

7. Discussion and Limitations
SPAD-based 3D cameras with high spatio-temporal res-

olution can produce unmanageable data rates. To reduce
their data bandwidth, we proposed to capture a compressive
representation (CSPH) of the high-resolution timing his-
togram, from which depths can be computed. The CSPH is
built in an online manner by projecting each photon times-
tamp with a coding matrix and aggregating them. By de-
signing the coding matrix appropriately, a CSPH can match
the depth precision of a full-resolution histogram in a wide
range of scenarios, while outputting significantly less data.

In-sensor Memory and Compute Considerations: Al-
though, CSPHs can reduce the in-pixel memory and sen-
sor data transmission rates, this comes at the expense of
higher per-photon computations, as summarized in Tab. 1.
While conventional histograms require a single addition
per-photon (increment histogram bin), CSPHs perform K
additions per-photon. Nonetheless, it may be possible to
implement these K additions efficiently using SIMD pro-
cessing. The next step in this line of work is to further
analyze these memory, computation, and data transmission
trade-offs from a hardware perspective.

Why not compute depths in-sensor? One way to reduce
the data rates would be to compute the per-pixel depths in-
pixel. However, due to the non-linearity of depth estima-
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Figure 9. Flash Illumination Compressive Single-Photon 3D Imaging. Depth images and depth errors for CSPH methods applied to
histograms of flash illuminated scenes. The kitchen and bathroom scenes were simulated with a mean photon count and mean SBR of
(1000, 0.25) and (1000, 0.5), respectively. The top row has the recovered depths and depth errors of an FRH with 2000 bins, and the RGB
image of the scene. The second and third rows have the CSPH depths (K = 20), and the depth errors for K = 20 (middle column)
and K = 40 (right column). The mean and median absolute errors (in mm) for the kitchen scene were: FRH-2000: (14, 3), truncated
Fourier-20: (26, 10), Gray Fourier-20: (22, 3), truncated Fourier-40: (16, 4), Gray Fourier-40: (14, 3). Similarly, for the bathroom scene:
FRH-2000: (10, 3), truncated Fourier-20: (24, 11), Gray Fourier-20: (12, 3), truncated Fourier-40: (14, 4), Gray Fourier-40: (11, 3).

tion (e.g., via peak finding), it requires building and stor-
ing the full-resolution histograms in the SPAD sensor chip.
Although, this approach could provide near-optimal com-
pression, it requires significant in-pixel memory. Moreover,
advanced depth estimation algorithms, such as matched fil-
tering, can have computational complexities larger than the
length of the histogram (N ).
Hardware Implementation: CSPHs are designed to re-
duce the per-pixel output data rate, which requires in-pixel
implementation. Recent advances in 3D-stacking CMOS
technology has enabled the in-pixel implementation of one
type of CSPH, namely coarse histograms [9, 28, 29, 53].
The next step in this line of work is to explore SPAD pixel
architectures that implement different CSPHs, which may
impose interesting constraints on the structure of C. For
instance, the architecture for a binary C (e.g., coarse his-
tograms or Gray coding with K = log2(N)) may be sim-
pler than for a C with continuous values.
Code Optimization: Instead of designing a coding matrix
based on the heuristics discussed in Sec. 4.1, C could be
optimized. We attempted to optimize C by setting it to
the PCA basis learned over a dictionary of shifted Gaussian
pulses. Unfortunately, this method simply leads to a Fourier
matrix (see supplement). One direction for future work
could explore optimizing C through gradient descent [40].
Photon-starved regime: When less than 20 photons are
recorded, timestamp transfer can outperform a CSPH at
SBR > 1. At lower SBR levels all methods begin to fail
and perform comparably. We present this analysis in the
supplement. Ultimately, low SBR and photon-starved sce-
narios require denoising to recover reliable depths [35, 46].

Denoising a CSPH instead of the full 3D histogram image
may provide some interesting computational benefits.
Non-linear Compression: It may be possible to design a
non-linear on-the-fly compression method. One challenge
in the design of such method is that it may not be able to
leverage the priors that enabled the design of coding matri-
ces robust to noise and indirect reflections. Nonetheless, ex-
ploring non-linear online compression algorithms remains
an interesting direction for future work.
Efficient Depth Estimation: ZNCC depth estimation al-
lows comparing different coding matrices under a single
framework. One limitation of our ZNCC implementation
is its linear computational and memory complexity. Given
that ZNCC is a template matching algorithm, efficient
coarse-to-fine implementations may be possible [2]. Alter-
natively, algorithms tailored for a particular C may provide
further computational benefits. For instance, Fourier coding
has different analytical [11,47], optimization-based [27,56],
and data-driven [59] depth decoding algorithms.
Social Implications: The work in this paper may contribute
towards the deployment of SPAD-based 3D cameras. The
emergence of SPAD-based NLOS imaging, raises privacy
concerns as these systems become available. Additionally,
3D applications such as autonomous vehicles, may have un-
intended socio-economic and environmental implications.
Acknowledgments: This work was supported by the De-
partment of Energy and National Nuclear Security Ad-
ministration (DE-NA0003921), National Science Foundation
(1846884, 1943149, 2107060, 2003129), and a Draper TIF
grant from UW-Madison. U.S. DOE full legal disclaimer:
https://www.osti.gov/stip/about/disclaimer.
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S. 1. Coding Matrix Properties
In this section we provide additional intuition for the coding matrix properties discussed in Section 4.1 of the main paper.

S. 1.1. A Geometric Perspective
Recall that the ith column of the coding matrix, C, can be interpreted as a code word of length K that represents the ith

time bin. We can view this code word vector as a point in a K-dimensional space. Moreover, consider the curve that is traced
by the N points (columns of C), denoted as the coding curve C. In other words, the rows of C parameterize the coding curve
C, as illustrated in Suppl. Fig. 1.
Uniqueness Property (non self-intersecting): Suppl. Fig. 1 shows different coding curves parameterized by the coding
matrices below them. Assuming a direct-only reflection model, i.e., Φ(t) = aδ(t− tz)+Φbkg, each point in the curve (K×1
code word vector) will correspond to the projection of a different time-shift tz [20]. Therefore, the uniqueness property
guarantees that each time-shift will map to a different point. If two or more different time-shifts map to the same point in
the coding curve, that means the coding scheme will have ambiguities when estimating depths. For instance, as observed in
the coarse histogram and dual-freq Fourier coding curves in Suppl. Fig. 1, the curves are self-intersecting at multiple points,
which means that those points correspond to more than one true depth value.
Robustness Property (locality preserving): If we add a small perturbation to a point on a locality preserving coding curve,
the perturbed point may map to a neighboring point along the curve. In Suppl. Fig. 1, neighboring points along the curve
will have similar colors. For instance, in the Truncated Fourier curve, if we add a perturbation to a “reddish” point, then its
nearest neighbor is likely to be another “reddish” point. On the other hand, a similar perturbation added to certain red points
in the Dual-Freq Fourier curves may cause them to map to a blue point. These perturbations are similar to adding noise to
the coded projection of the ground truth histogram, and mapping to non-neighboring points is similar to estimating a very
different depth from the true depth. Hence, coding matrices with non-locality preserving curves are less robust to noise.

Coding Curves V1

Unique and Locality Preserving

Trunc. Fourier 𝐾 = 3

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Cont. Gray 𝐾 = 3

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Self-Intersecting (Non-unique) and Non-locality Preserving

Coarse Histogram

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Dual-Freq Fourier (f=[2, 3])

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Dual-Freq Fourier (f=[10, 11])

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Random Codes 

R
o

w
3

 o
f 𝐶

Coding Matrix 𝐶

Supplementary Figure 1. Example Coding Curves. A coding curve is formed by plotting each column of the K × N coding matrix in
K dimensional space. This figure shows examples with K = 3. Observe that unlike dual-frequency Fourier coding and random coding,
truncated Fourier and Gray coding provide non-self-intersecting and locality preserving coding curves. This implies that the latter methods
have a unique one-to-one mapping between the true (unknown) depth values and the coded measurements, and small perturbations (due to
noise) do not cause large jumps in the compressed measurements.

S. 1.2. Coding Function Bandwidth Selection
The band-limit and indirect reflection properties, discussed in Sec. 4.1 of the main paper, give us a heuristic for choosing

the frequency content of our coding functions (i.e., rows of C). We begin by analyzing the band-limit property.
Band-limit Property: Consider the discrete Fourier series of the system IRF, h = (hi)

N−1
i=0 , whose maximum harmonic is

b < N .

hi =

b∑
k=0

Hk exp

(
j 2πki

N

)
(7)



where j =
√
−1, 0 ≤ i < N − 1, and Hk are the Fourier coefficients. Moreover, let c = (ci)

N−1
i=0 be one coding function

of C. The band-limit property says that c should not only be composed of frequencies larger than the system’s band-limit
(i.e., b). If c is only composed of frequencies that are not contained in b, the inner product of c and h will be zero, due to
the orthogonality of sinusoids [54]. Hence, the coded measurement captured by c will not capture any information from the
histogram photon flux waveform.
Indirect Reflection Property: Let α(t) be the impulse response of a point in the scene. Under the direct-only assumption,
α(t) = aδ(t − tz), the impulse response is just the time-shifted direct reflection of that point. In the presence of diffuse
indirect reflections, α(t) can be written as the sum of the direct reflection and the diffuse indirect reflections:

α(t) = aδ(t− tz) + αr(t) (8)

where αr(t) are the diffuse indirect reflections. Suppl. Fig. 2 shows an example of a scene point impulse response with
diffuse indirect reflections (orange line). As observed in the frequency response, the indirect reflections have a much smaller
bandwidth than the direct reflection. Beyond 1GHz, the direct reflection is the dominant component. Therefore, for coding
functions mainly composed of frequencies above 1GHz, the direct-only assumption continues to apply because the indirect
component for frequencies above the threshold will be near 0. In general, the threshold is scene dependent [19], but scenes
with relatively similar scales may have similar thresholds.

Indirect Reflections V1
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Supplementary Figure 2. Diffuse Indirect Reflections Example. Observe that the direct reflection has a narrow support in time and hence
has much wider spectrum compared to the indirect response which, in this scene, does not go beyond 1GHz.



S. 2. ZNCC Depth Estimation

Given a CSPH, B̂, acquired with a coding matrix C, we want to estimate the depth encoded by B̂. There exists a
general depth decoding algorithm based on the zero-mean normalized cross-correlation (ZNCC) between B̂ and C, originally
proposed for structured light [6, 40], and later applied to iToF imaging [21, 22]. Assuming a direct-only model, ZNCC
decoding becomes optimal as noise goes to zero [40]. Moreover, even when the direct-only assumption does not hold, ZNCC
continues to provide robust depth estimates [6, 21, 40].
Band-limited ZNCC Decoder [40]: Let Ch be the band-limited coding matrix, whose kth row, is defined as:

Ch
k,i = (h ∗ Ck,:)i (9)

where h is the system IRF, and Ck,: is the kth row of the coding matrix. Let Ch
:,i be the ith column of Ch. We can estimate

depths, by finding Ch
:,i that produces the maximum ZNCC with B̂ as follows:

t̂z ∝ argmax
i

Ch
:,i −mean(Ch

:,i)∥∥Ch
:,i −mean(Ch

:,i)
∥∥ · B̂ −mean(B̂)∥∥∥B̂ −mean(B̂)

∥∥∥ (10)

Depths can be estimated from the time-shift tz . Note that, although, we capture the CSPH using the input C matrix, we
estimate distances using the band-limited coding matrix Ch. Therefore, Suppl. Eq. 10 assumes the system’s IRF, h, is
obtained in a prior one-time calibration step. Furthermore, if all coding functions in C are zero-mean, like the Fourier codes
in Suppl. Fig. 1, then the above algorithm can be implemented as a normalized cross-correlation (NCC), where we do not
need to subtract the mean in the numerator or denominator [40].

Suppl. Eq. 10 accounts for the system IRF (h) when estimating depths by using Ch instead of C. Not accounting for the
IRF is equivalent to assuming that the system IRF is a dirac-delta function. In our experiments we find that not accounting
for h can reduce the performance and sometimes introduce systematic depth errors in coding schemes that contain coding
functions with frequency content outside of the band-limit of h.
Depth Estimation for Full-Resolution Histogram: To compute depths for FRHs we used matched filtering [63]. Interest-
ingly, matched filtering is similar to applying Eq. 6 when C is an N ×N identity matrix.



S. 3. Monte Carlo Simulations and Isometric Compression Analysis
In this section we provide further details on the Monte Carlo simulations performed to quantify the performance of each

coding scheme. We also present additional mean and median depth errors results and isometric compression results for a
wide range of SBR and photon count levels at various compression ratios. Finally, we present a similar analysis but for the
case of a wide Gaussian pulse.

S. 3.1. Quantifying Coding Scheme Performance
A high-performance coding scheme should be able to provide high depth precision for the full depth range and at a wide

range of signal and background light levels. One way to quantify the performance of a coding scheme is to compute the
mean expected absolute depth error (MDE) [20, 22] at a wide range of signal and background light levels. In this paper we
report the relative MDE, which is the MDE metric divided by the maximum possible depth value. Moreover, since depths
are proportional to time shifts, the relative depth errors will be equivalent to relative time shift errors, hence we use these
interchangeably when computing the relative MDE.

Monte Carlo MDE Computation: For a given coding scheme, fixed average photon counts (
∑N

i=0 Φi), signal-to-

background ratio (SBR =
∑N

i=0 Φsig
i

N∆Φbkg ), histogram length (N ), and system IRF (h(t)), we compute the MDE as follows. First,
we generate h(t) at D equispaced time shifts over N , and scale and vertically shift the noiseless h(t) according to the input
SBR and mean photon counts. Second, we draw a poisson sample at each time bin (i.e., add noise). Third, we encode the
noisy histogram as in Eq. 4 of the main paper. Then, we compute the D time shifts as in Suppl. Eq. 10, and take the absolute
difference with the ground truth. Finally, the above process is repeated S times, and the expected errors are computed for all
S · D time shifts, averaged to obtain the MDE, and divide by N to obtain the relative MDE. Moreover, we also report the
median expected depth error which is in the same way as the MDE, but instead of averaging the S · D time shifts, we take
the median. For all the simulations in this paper we use N = 1024, S = 1000, and D = 64.

S. 3.2. Isometric Compression Analysis
In this section we present the mean and median depth error results and the isometric compression analysis for all coding

schemes at different compression ratios. We compare the relative MDE of the FRH (εFRH) and the CSPH (εCSPH) to determine
isometric compression. Since Continuous Gray coding is only defined up to K ≤ log2(N) = 10 for N = 1024, we defined a
coding scheme that extends Gray coding higher K values using a similar intuition as Gray-based Fourier coding in the main
paper, and we denote it as Fourier-based Gray coding:

• Fourier-based Gray Coding: Suppl. Fig. 5 shows a Fourier-based Gray coding matrix for K = 16. The first ⌊log2(N)⌋
rows of this matrix are the same as Gray coding. The second ⌊log2(N)⌋ − 2 codes are the 90 degree shifted version
of each Gray code, excluding the first two gray codes. For the remainder codes we sample binary square functions at
increasing frequencies that have not been sampled, in the same way the Gray-based Fourier coding samples Fourier
components. The Fourier-based Gray coding matrix at K > 2⌊log2(N)⌋− 2, becomes a binary form of the Gray-based
Fourier matrix with the initial rows in a different order.

Main Observations: Suppl. Fig. 3 and 4 show the isometric compression results for compression ratios of 64 (K = 16) and
16 (K = 64). At high compression ratios of 64x only Gray-based Fourier and Fourier-based Gray coding are the only coding
schemes that are able to achieve isometric compression with εdiff < 0.01 for a wide range of SBR and photon count levels. As
we use a greater number of codes (reduce compression), Truncated Fourier coding starts approaching the performance of the
proposed coding schemes in the isometric compression regions with low εdiff < 0.01. Overall, commonly used approaches
such as coarse histograms and timestamp transfer, consistently exhibit lower performance than a CSPH.

• Gray-based Fourier vs. Fourier-based Gray: Overall, the performance of these two coding schemes is very similar
at K > log2 N and across SBR and photon count levels. In the main paper we focus our discussion on Gray-based
Fourier coding due to its marginally better performance at low SBR and its interpretability due to its use of Fourier
functions. Nonetheless, Fourier-based Gray coding is an interesting coding scheme because at K > log2 N it becomes
fully binary, which may have a simple hardware implementation.

• Rate of Performance Decay: As we decrease SBR and the photon count levels (approach lower left corner of isometric
countour plots), the performance of all methods begins to degrade at different rates. Gray-based Fourier coding is able to
maintain low relative MDE up to a certain SBR and photon count level, and then its relative MDE quickly degrades faster
than the ideal FRH, creating small isometric contours for 0.01% < εdiff < 1%. On the other hand, the performance of



Truncated Fourier coding progressively degrades, creating larger isometric contour regions for 0.01 < εdiff < 1, albeit
at higher SBR and photon count levels. At K = 16 the progressive performance decay of Truncated Fourier, allows it to
achieve isometric compression with lower εdiff for some SBR (< 0.1) and photon count levels (< 1000). Unfortunately,
this advantage of Truncated Fourier coding is encountered around εdiff ≈ 1%, which for a 10m depth range is an relative
MDE difference of 10cm. Therefore, the better choice at those challenging SBR and photon count levels is to increase
K for Gray-based Fourier Coding.

• Mean vs. Median Depth Errors: Comparing the relative mean and median errors surface plot trends allow us to learn
useful things about each coding scheme. Coding approaches where the trends are similar produce depth errors of similar
magnitudes. In the case of Truncated Fourier coding or a Coarse Hist (Wide Pulse), this means that they will make a lot
of small errors, even at high SBR. On the other hand, approaches such as Timestamp transfer and Gray-based Fourier
coding, can produce high relative mean depth errors while maintaining near-zero median depth errors. This is because,
as we decrease SBR and photon count levels, these approaches either estimate the depth with near-zero error or produce
a very high depth error (outliers).

In Appendix S. 8 we show additional results for compression ratios of 128, 32, and 8.
Summary: Our extensive Monte Carlo simulations and isometric compression analysis provide a guide for selecting the
appropriate CSPH coding scheme when we have prior knowledge on SBR and photon count levels. Our results suggest
that at K < 32, Gray-based Fourier coding is a good choice that can provide high compression without sacrificing depth
precision in a wide range of scenarios. At higher K, Truncated Fourier becomes a competitive choice that can perform com-
parably to Gray-based Fourier. Overall, carefully designed coding matrices can significantly outperform a coarse histogram
or transferring timestamps.K = 16 Analysis (High Compression) V1- Supplement
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Supplementary Figure 3. Isometric Compression Analysis at 64x Compression (K = 16) . The surface plots show the relative mean
and median depth errors computed as described in Sec. S. 3.1 for coding schemes with K = 16. The isometric compression contour plots
are created by taking the element-wise absolute difference of each coding scheme relative MDE with the ideal FRH, and then classifying
the difference into various margins (εdiff). As we decrease SBR and photon count levels, the isometric compression margin achieved by
each method increases. Finally, as we approach the lowest SBR and photon count levels, even the FRH starts failing too which makes εdiff

smaller again. Although, the range of SBR and photon count levels for the isometric contour plots are 0.01-1 and 100-10000, the surface
plots show SBR and photon count levels of 0.05-1 and 500-10000, for visualization purposes.
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Supplementary Figure 4. Isometric Compression Analysis at 16x Compression (K = 64) . The surface plots show the relative mean
and median depth errors computed as described in Sec. S. 3.1 for coding schemes with K = 64. The isometric compression contour plots
are created by taking the element-wise absolute difference of each coding scheme relative MDE with the ideal FRH, and then classifying
the difference into various margins (εdiff). As we decrease SBR and photon count levels, the isometric compression margin achieved by
each method increases. Finally, as we approach the lowest SBR and photon count levels, even the FRH starts failing too which makes εdiff

smaller again. Although, the range of SBR and photon count levels for the isometric contour plots are 0.01-1 and 100-10000, the surface
plots show SBR and photon count levels of 0.05-1 and 500-10000, for visualization purposes.

Supplement Coding Matrices V1

Fourier-based Gray Coding 𝐾 = 16 Short-Time Fourier Coding 𝐾 = 16 Walsh Hadamard Coding 𝐾 = 16

Supplementary Figure 5. Additional Coding Matrices. In addition to the coding schemes presented in the main paper we also evaluate
these coding schemes. Fourier-based Gray coding is evaluated in Sec. S. 3.2. Short-time Fourier and Walsh Hadamard coding are evaluated
in Sec. S. 3.3.



S. 3.3. Comparisons with Additional Coding Schemes
In this section we evaluate two additional CSPH coding schemes and compare them with the coding schemes presented in

the main paper:

• Short-time Fourier: The coding matrix is similar as the coarse histogram, but instead of setting the rectangular window
at each row to all 1’s, we set the values inside the window to a single period of a sinusoidal function. As illustrated in
Suppl. Fig. 5, the odd and even rows use a cosine and sine function respectively. We refer to this method a short-time
Fourier, due to its similarity to a short-time Fourier transform.

• Walsh Hadamard: To generate C, we first generate a K ×K Hadamard matrix using scipy’s Hadamard function [64],
transpose it, and then linearly interpolate each row to make it length N .

To evaluate the coding schemes we use the relative mean and median depth errors metrics described in Sec. S. 3.1.
Main Observations: Suppl. Fig. 6 compares the performance of Short-time Fourier and Walsh Hadamard coding with the
coding schemes used in the main paper, at multiple compression ratios. Walsh Hadamard coding consistently achieves the
lowest performance. Short-time Fourier, achieves lower relative median depth errors than Truncated Fourier but higher
relative median depth errors, while having similar performance trends. Gray-based Fourier coding achieves outperforms all
coding schemes at most SBR and photon count levels.
Summary: Although, the new coding schemes evaluated in this section were not able to outperform Gray-based Fourier
coding for the most part, their performance was competitive and well above a coarse histogram method.Additional Coding Schemes
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Supplementary Figure 6. Performance of Additional Coding Schemes. Relative mean and median depth errors at different compression
ratios. As we decrease compression, all coding schemes quickly approach the performance of the ideal FRH (note the z-axis is different at
each compression ratio), and the performance difference across coding schemes becomes small. However, at high compression ratios, the
choice of coding scheme is crucial at most SBR and photon count levels.



S. 3.4. Isometric Compression with Wide Gaussian Pulses
In this section we analyze how isometric compression trends change as we increase the system IRF pulse width.
Suppl. Fig. 7 shows the isometric compression contour plots for multiple coding schemes with system IRFs set to Gaus-

sian pulses with varying widths. The relative MDE isometric contour plots are generated using similar MDE Monte Carlo
simulations described in Sec. S. 3.1.
Main Observations: As we increase the pulse width used, the isometric contours with low εdiff ≤ 1% increase for Truncated
Fourier, Gray-based Fourier, and coarse histograms. In particular, the overall performance difference between Truncated
Fourier and the ideal FRH shrinks. This is because increasing the pulse width, decreases the bandwidth of the photon flux
waveform, which makes Truncated Fourier more efficient. For medium SBR and photon count levels, the performance of
Gray-based Fourier coding decreases, as the pulse width increases, because some of the high-frequency coding functions get
zero-ed out (band-limit property). Moreover, the performance of an FRH with a wider pulse also decreases at a faster rate as
we decrease SBR and photon counts. Therefore, at the lowest SBR and photon count levels, the FRH performs as poorly as
the CSPH methods, leading to isometric compression with small εdiff again. Finally, the timestamp transfer baseline is one of
the methods that is impacted the most as the pulse width increases. In Suppl. Sec. S. 9 we show additional contour plots for
compression ratios of 64 and 16.
Summary: Truncated Fourier coding is the better CSPH for a SPAD-based 3D camera that has a pulse width significantly
wider than the SPAD’s time resolution (∆). At narrower pulse widths, Gray-based Fourier coding performs better because
these narrow pulses have useful high-frequency content that Gray-based Fourier coding samples. Overall, the system IRF
and consequently the laser pulse waveform, play an important role in the choice of the CSPH coding scheme.K = 32 Analysis Wide Pulse Results - Supplement
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Supplementary Figure 7. Wide Pulse Isometric Compression at 32x Compression (K = 32). The Gaussian pulses used as h(t) are
proportional to: exp− t2

∆
(1st row), exp− t2

4∆
(2nd row), exp− t2

10∆
(3rd row). The jagged edges observed in the isometric contours at low

SBR and low photon counts are caused by the variance of the Monte Carlo simulations which adds small variance to the relative MDE of
all methods.



S. 4. Low Photon Count Regime
In this section we analyze the performance of different coding schemes in the low photon count regimes where less than

100 photons are detected per pixel, on average. In practice, this is important for scenarios such as low scene albedo, long
standoff distances, extremely short acquisition times, or in case of constrained laser power budget.

Suppl. Fig. 8 shows the mean depth errors for different coding schemes as a function of SBR and total number of photons.
The total number of photons includes both signal (laser) and background (ambient) photons. The relative MDE Monte Carlo
simulations were performed with the same parameters as in Sec. S. 3.2. The number of coding functions used for each photon
count range is chosen to roughly match the expected number of photons (e.g., for a photon count range of 10-20, we use 16
coding functions). Note that in some cases the compressive algorithm may require more data bandwidth than timestamp
transfer (e.g. when there are only 10 photons captured and the compressive method uses K = 16 Fourier coefficients.)
Moreover, in the low count regime, timestamp transfer is nearly equivalent to the FRH that transfers all time bins.
Main Observations:

• In the high SBR regime the proposed Fourier-coding based methods provide some benefits over näive coarse histogram-
ming approaches. When the number of photons captured is > 20, compressive methods perform almost as well as FRH
and timestamp transfer and provide almost perfect depth reconstruction. The extent of compression achieved vis a vis
transferring raw timestamps is limited due to the low number of photons captured in each pixel.

• In the low SBR regime most of the photons captured by the pixel are ambient photons, hence, the overall relative MDE
remains high. In this regime, neither compressive approaches nor the baseline approaches (coarse histogramming, FRH
and timestamp transfer) provide usable depth maps, with relative MDEs as high as 25% due to Poisson noise. In such
scenarios it may become necessary to either increase the laser power, increase the total acquisition time, or resort to
other denoising approaches (e.g. spatio-temporal filtering) [35,50,58,60] that can complement the compressive capture
strategies discussed in this paper.

Summary: In the low photon count regime it is necessary to combine the compressive acquisition methods described in this
paper with denoising approaches that operate on raw timestamp data or on compressed histogram measurements.
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Supplementary Figure 8. Photon-Starved Mean Depth Error Results. (Top Row) In the high SBR regime, compressive approaches
provide better relative MDE as compared to coarse histogramming or raw timestamp transfer. (Bottom Row) In the low SBR regime
compressive acquisition alone is not sufficient to achieve low MDE and other spatio-temporal denoising methods may be necessary to
combat Poisson noise in these photon-limited regimes.



S. 5. Additional Real-world Scanning-based System Results
In this section we present additional results from the real-data acquired with the scanning-based system from [15].
Suppl. Fig. 9 and 12 show the two scans that we downloaded and pre-processed from [15]. The pre-processed per-pixel

full-res histograms have ∆ = 8ps and N = 832. To obtain ground truth depths we applied Gaussian denoising (σ = 0.75)
to the full-resolution histogram images of each scene, and computed depths using matched filtering. As observed in the
FRH depth images in Suppl. Fig. 9 and 12, there are some points whose SNR is too low to obtain a reliable depth even after
denoising, therefore we manually mask those points when visualizing the depths and depth errors (white regions). The system
IRF, h(t), is extracted from on of the points near the center of the denoised histogram, and then is further pre-processed to
remove most background photons and center it around t = 0.
Main Observations: As observed in Suppl. Fig. 9 and 12, at K = 8, all CSPH methods make systematic depth errors in
the background points. These errors are caused by the longer tail observed in the background points histogram shown in
Suppl. Fig. 10. At K = 16, Gray-based Fourier coding contains sufficient coding functions with high-frequency content that
mitigate the effects of the longer tail and estimate reliable depths in the background points. Finally, at K = 32 Gray-based
Fourier and Truncated Fourier are able to essentially match the performance of the FRH. Coarse histograms can achieve
sub-bin precision because h(t) spreads over multiple coarse time bins. Nonetheless, the depth precision is lower, and the
systematic errors in the background points continue to affect it, even at K = 32.
Summary: Despite the non-idealities encountered in real data (long-tailed h(t) and indirect reflections), CSPH coding
approaches, such as Truncated Fourier and Gray-based Fourier, can provide significant compression without sacrificing depth
precision.
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Supplementary Figure 9. Scan Data Results at Different Compression Ratios. As we decrease the compression (increase K) the errors
for all coding schemes decrease. Truncated Fourier at K ≤ 16 is susceptible to the systematic errors caused by the longer tail that
appears in the background histograms (Suppl. Fig. 10). At K = 32 both Gray-based Fourier and Truncated Fourier essentially match the
performance of using the full-res histogram. Comparatively, coarse histogram have low depth precision and are quite susceptible to the
longer tail of the background points histogram, even at K = 32.
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Supplementary Figure 10. Denoised Raw Histograms. We apply a 3D Gaussian filter to the histogram image of the face scan and visualize
histograms at different scene points. Note that the histogram extracted from the background point (orange line) exhibits a longer tail than
the histograms obtained from points on the face. This longer tail is likely due to indirect reflections.
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Supplementary Figure 11. 3D Reconstruction Visualizations. To generate the 3D reconstructions in this paper we apply a 3× 3 median
filter to the recovered depth images, generate point clouds, and use MeshLab to estimate normals and perform Poisson surface reconstruc-
tion [7].
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Supplementary Figure 12. Scan Data Results for Deer Scene. The first and second row show the depth and depth error image pairs
obtained from each CSPH coding method. As we decrease the compression (increase K) the errors for all coding schemes decrease.
Truncated Fourier at K = 8 is susceptible to the systematic errors caused by the longer tail that appears in the background histograms.
Increasing K resolved these errors are mitigated by using coding functions with higher frequencies.



S. 6. Additional Simulated Flash Illumination System Results
In this section we evaluate different CSPH strategies applied on a flash illumination scenario at varying SBR levels. The

flash illumination system data is simulated from physically accurate histogram images rendered with MitsubaToF [43]. The
scenes input to MitsubaToF are obtained from [21]. The histogram image parameters were ∆ = 50ps and N = 2000 time
bins. As described in the main paper, we use the R channel of the corresponding RGB image of the scene as an approximation
of the per-pixel background photons. Then to simulate the FRHs we set the mean SBR and mean photon counts of the overall
scene, and use those input values to scale and the histogram image and vertically shift it (add background). Similar to the
relative MDE simulation results, we use an h(t) ∝ exp− t2

∆ which is convolved with the rendered ground truth per-pixel
histograms.
Main Observations:

• Indirect Reflections Errors: At K = 20 Truncated Fourier is susceptible to systematic depth errors caused by diffuse
indirect reflections. For Truncated Fourier coding, the only way to overcome these errors is to increase K and use higher
frequencies. Gray-based Fourier coding can mitigate these errors with only 20 coding functions.

• Outlier Depth Estimates: At K = 20, in low SBR regions, Gray-based Fourier coding produces depth estimates with
either near-zero or very high (outlier) errors. This is consistent with the observations made in Sec. S. 3.2, where the
mean depth errors were significantly higher than the median (due to outliers). Increasing K helps Gray-based Fourier
coding mitigate these outliers and perform comparably to a FRH.

Summary: Truncated Fourier coding at low K is susceptible to errors due to indirect reflection, regardless of SBR or
photon count levels. This means that a Truncated Fourier CSPH on a flash illumination system may require higher K (lower
compression) to avoid trading-off depth precision. Gray-based Fourier coding, on the other hand can use lower K (high
compression) and still achieve high depth precision, as long as the SBR level is sufficiently high. Overall, having prior
knowledge on the SBR and photon count levels can help select the correct K to use in a CSPH.
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Supplementary Figure 13. Flash Illumination Results at Multiple SBR. We simulate the same scene with different mean SBR levels,
and fixed mean photon counts to 2000. A mean scene SBR of 0.05 means that if we look at the per-pixel SBR and average them, we will
obtain approximately 0.05. As observed in the bottom row, as we increase the SBR, the photon count image remains unchanged (because
mean scene photon counts is fixed at 2000), but the peak of the per-pixel histogram increases.



S. 7. PCA Codes

Supplementary Figure 14. PCA Codes at Different Pulse Widths. In (a) two Gaussian pulses at different pulse widths (σ) are shown.
(b-e) shows PCA coding matrix (K = 16) for σ = 1, 5, 10, 20. All four pulse widths yield similar PCA codes that look like Fourier
components. Note that some PCA codes in (b,c,e) are multiplied by negative one when compared to (d) or the Fourier codes.

This section will describe how we found the principal component analysis codes used in the main paper and why they
relate to Fourier codes. To numerically find the PCA codes, we generate many Gaussian LiDAR pulses at different signal-
to-background ratios and with different shifts representing the binned return signal at the camera sensor. Let (Φi,s,b)

N−1
i=0

be the binned photon flux waveform from Eq. 2 in the main text when Φsig(t) is a Gaussian pulse centered at time s and
Φbkg = b. Therefore, (Φi,s,b)

N−1
i=0 is the binned return signal from a Gaussian laser pulse, from an object at distance cs

2 , and
signal-to-background ratio of 1

b .
In order to run PCA we generate (Φi,s,b)

N−1
i=0 for many s and b values and stack them into a large matrix. Specifically,

we use 1000 s values in increments of ∆s = τ
1000 from 0 to τ , that is s ∈ {0,∆s, 2∆s, . . . τ}. At each s value we use 50

b values with log spacing with increments of ∆b = 2
50 from 10−2 to 1, that is b ∈ {10−2, 10−2+∆b , 10−2+2∆b , . . . 1}. The

final matrix, M , is given by,

M(b) =
1

1 + b


Φ0,0,b Φ1,0,b . . . ΦN−1,0,b

Φ0,∆s,b Φ1,∆s,b . . . ΦN−1,∆s,b

Φ0,2∆s,b Φ1,2∆s,b . . . ΦN−1,2∆s,b

...
...

...
Φ0,τ,b Φ1,τ,b . . . ΦN−1,τ,b

 (11)

M =


M(10−2)

M(10−2+∆b)
...

M(1)

 (12)

Where the factor of 1
1+b ensures that the rows of M(b) sum to 1. We then use PCA on M and use the found PCA

components as the PCA codes. Some of our found PCA codes for four different pulse widths are shown in Suppl. Fig. 14.
Interestingly, the resulting PCA codes where very similar to Fourier codes.

To understand why PCA codes are similar to Fourier codes consider a single b value and set ∆s to the length of a
single time bin, then M(b) will be a circulant matrix. It turns out that eigenvectors and thus PCA components of circulant
matrices are given by Fourier components [62]. To understand why recall that circulant matrices implement convolutions.
Convolutions are simply multiplications in the Fourier domain which implies that the eigenvectors of a convolution and thus
circulant matrices are the Fourier components. Although, we do not use ∆s equal to the length of a time bin, the M(b)’s we
use are close to a circulant matrix so our resulting PCA components are very close to Fourier components.
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Supplementary Figure 15. Isometric Compression Analysis at 128x Compression (K = 8) .
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Supplementary Figure 16. Isometric Compression Analysis at 64x Compression (K = 32) .
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Supplementary Figure 17. Isometric Compression Analysis at 8x Compression (K = 128) .



S. 9. Appendix B: Additional Isometric Compression Results with Wide Pulses
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Supplementary Figure 18. Wide Pulse Isometric Compression at 64x Compression (K = 16). The Gaussian pulses used as h(t) are
proportional to: exp− t2

∆
(1st row), exp− t2

4∆
(2nd row), exp− t2

10∆
(3rd row).
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Supplementary Figure 19. Wide Pulse Isometric Compression at 16x Compression (K = 64). For σ = 10 the coarse histogram
method follows a different trend from what is seen before. This is because at high SBR and high photon counts, the coarse histogram is
quantization limited, while the FRH can achieves low depth errors. As SBR and photon counts decrease the FRH performance decreases,
while the coarse histogram continues to be quantization limited. As SBR and photon counts continue to decrease the performance of the
coarse histogram starts degrading more rapidly than the FRH. And finally, at the lowest SBR and photon count levels both methods are
achieving very high depth errors (almost estimating depths at random), making their εdiff small again.
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