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Facebook: a friend wheel

visual representation of
relationships between the
friends of any one person

constructed by placing
friends equidistant from
each other on
circumference of circle

line segments are drawn
between each point if
those people are friends
with each other

Order to reduce amount
of ink used
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QAP (Koopmans and Beckman)

Given n facilities {f1, . . . , fn}, n locations {l1, . . . , ln}:
Determine to which location each facility must be assigned
p : {1, . . . , n} 7→ {1, . . . , n} is an assignment whose cost is

c(p) =
n∑

i=1

n∑
j=1

wi ,jdp(i),p(j)

QAP : min c(p) subject to p ∈ Πn

QAP is known to be strongly NP-hard

n is the number of friends of a given individual

wi ,j = 1 if i is a friend of j , and 0 otherwise

dr ,s is the distance from location r on the circle circumference to
location s
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Northern Wisconsin: Conservation

Golden-winged Warbler. Species maps are 14,309 columns by 11437 rows. 

 
Study area divided by Land Type Associations. 
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Northern Wisconsin: There’s More

Some species require complementary habitats
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The specs

GIS data (77 million pixels with indicator that land type in 30 by 30
meter square can support species)

Incompatibility matrix (cannot have certain species co-habiting)

Threshold values (how much land required)

Compact regions, limit total land conserved!

xs,i ,j =

{
1 if (i , j) conserved for species s
0 else

Example of an assignment model (e.g. Sudoku, etc)
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A poor solution
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Mip solution needs enormous time, does not get compact boxes or
multiple use [Use CPLEX with Matlab tool to visualize solution]
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Alternative approach
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Data reduction (via largest connected components). Solve for these in
parallel using network simplex.
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Reassembling solution
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Choose clusters for each species; ensure complementary habitat is
satisfied; optimize multiple species overlap

Michael Ferris (University of Wisconsin) Optimization and WID Madison, October 2009 9 / 24



Cancer treatment

Conformal Radiotherapy 
  Fire from multiple 

angles 
  Superposition allows 

high dose in target, low 
elsewhere 

  Beam shaping via 
collimator 

  Gradient across beam 
via wedges 
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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give three examples of this: disjunctive programming, bilevel
programming and multi-agent competitive models
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Transmission switching

Opening lines in a transmission network can reduce cost
But that is infeasibleBut that is infeasibleBut that is infeasible…But that is infeasible…

Capacity limit: 100 MW
$20/MWh

200 MW generated

133 MW

200 MW load

67 MW

200 MW load

$40/MWh

9

(a) Infeasible due to line capacity

A feasible dispatchA feasible dispatchA feasible dispatchA feasible dispatch
Total Cost:  $20/MWh x 100 MWh          

+$40/MWh x 100 = $6 000/h

Capacity limit: 100 MW
$20/MWh

100 MW generated
+$40/MWh x 100  $6,000/h

67 MW

200 MW l d
33MW

100 MW 
generated

33MW

200 MW load

$40/MWh

g

67 MW$40/MWh 67 MW

10

(b) Feasible dispatch

Need to use expensive generator due to power flow characteristics and
capacity limit on transmission line
Determine which subset of lines to open at any given hour
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The basic model

ming ,f ,θ cTg generation cost
s.t. g − d = Af , f = BAT θ A is node-arc incidence

θ̄L ≤ θ ≤ θ̄U bus angle constraints
ḡL ≤ g ≤ ḡU generator capacities
f̄L ≤ f ≤ f̄U transmission capacities

with transmission switching (within a smart grid technology) we modify as:

ming ,f ,θ cTg
s.t. g − d = Af

θ̄L ≤ θ ≤ θ̄U
ḡL ≤ g ≤ ḡU

either fi = (BAT θ)i , f̄L,i ≤ fi ≤ f̄U,i if i closed
or fi = 0 if i open

Use EMP to facilitate the disjunctive constraints (several equivalent
formulations, including LPEC)
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Issues

Models are critical to making hard business decisions

Model needs enough detail so solutions are realistic

Computation is hard - many possibilities!

Need large scale solvers

How to obtain data, get data into model, verify data integrity - more
tools and models

Interplay between model, data and decision maker is critical

Visualization helps in motivating the answers
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Nash equilibria: modeling competition

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

Can solve large instances of these problems

Model competing agents, etc
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EMP(iii): Embedded models
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vifunc H y dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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Competing agent models

Competing agents (consumers)

Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention)
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The model details: Brown, Demarzo, Eaves
Each agent maximizes:

uh = −
∑

s

πs

(
κ−

∏
l

c
αh,l

h,s,l

)
Time 0:

dh,0,l = ch,0,l − eh,0,l ,
∑

l

p0,ldh,0,l +
∑
k

qkzh,k ≤ 0

Time 1:

dh,s,l = ch,s,l − eh,s,l −
∑
k

Ds,l ,k ∗ zh,k ,
∑

l

ps,,ldh,s,l ≤ 0

Additional constraints (complementarity) outside of control of agents:

0 ≤ −
∑
h

zh,k ⊥ qk ≥ 0, 0 ≤ −
∑
h

dh,s,l ⊥ ps,l ≥ 0
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Issues

New model paradigms available

Models with continuous, discrete, categorical variables necessary

Size matters

Can solve realistic scale instances

Data collection remains hard - new tools help

Models are critical to making hard decisions
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IV: Simulation-based optimization problems

Computer simulations are used as substitutes to evaluate complex real
systems.

Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields.

The goal: Optimization finds the best values of the decision variables
(design parameters or controls) that minimize some performance
measure of the simulation.

Other applications: calibration, design optimization, inverse
optimization
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Design a coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize

Michael Ferris (University of Wisconsin) Optimization and WID Madison, October 2009 22 / 24



Issues

Complex interactions of different types of models

Large scale solution, in “real time”

Models to aid in data collection/verification

Uncertainties in data and model

Moving effective models into practice - getting the checks done!
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Conclusions

Optimization models effective for large scale planning/operations

Design optimization possible in conjunction with “expert” simulations

Must treat uncertainties both in data and model

New model paradigms (e.g. complementarity, conic programming,
stochastic programming) effective for treating uncertainties and
competition

Engaged teams (including embedded optimizers) are most effective
for timely, relevant solutions
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