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Introduction to stochastic kinetics Reactions on small length scales: Virus infection

Simple Viral Infection Model
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@ Small species populations 0 L S 200

@ Species numbers are integers, reactions cause integer jumps

@ Large fluctuations in species numbers and reaction rates

Average Stoch

@ Biological networks and catalyst particles
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Average concentrations of small systems are not necessarily the same as
the deterministic evolution.
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Stochastic simulation (SSA) — Gillespie algorithm
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5| SSA Algorithm
na 4t " @ Choose which reaction
Z @ Choose time step
1) © Repeat
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time (sec)
o Random number 1
_n _ 12 n__ _3
@ Which reaction: | i, T | i P

@ Time step: Sample from an exponential distribution where the
distribution mean is the sum of reaction rates.
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Chemical master equation
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SSA simulations and probability

!‘:Isiatogram at t=2sec, for 5000 simulations

Multiple KMC simulations, A == B
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@ SSA simulations are samples of a probability distribution that evolves
in time.

@ We can write the evolution equation for the probability density
(chemical master equation).

Master equation — Important points

Chemical master equation
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dP(x) &
= ) rx—y)Px—v)— [(x)P(x)
dt — P —
=t rate into state x rate out of state x
dP
= = AP
dt )

@ Often the dimensionality of the master equation makes direct solution
infeasible

@ The master equation shows what probability distribution is sampled in
an SSA simulation

@ A reduced master equation can lead to a new/faster simulation
schemes
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The sampled density The cumulative sampled density

ps(x) = Z w;0(x — x;i) xj samples w; weights 1t
i=1
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. Corresponding exact P(x) and sampled Ps(x) cumulative distributions
Exact density p(x) and a sampled density ps(x) with five samples for : & (x) 8 5(x)

&~ N(0,1)
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Convergence of the sampled density with sample number The sampling error distribution in pictures

Define a measure of sampling error

Cumulative distribution for the sampling error Pr(Ds) of a unit variance

Ds = sup |Ps(x) — P(x)] normal for three different sample sizes, s = 10,100, 1000
X 1 T
0.8 |
Theorem (Kolmogoroff (1933))
Suppose that P(x) is continuous. Then for every fixed z > 0 as s — o0 0.6
Pr(D;)

Pr (Ds < zs_l/z) — L(z) 041

in which L(z) is the cumulative distribution function given for z > 0 by 02} | | .
s J gits
= 212 /822 %01 4 0.1 1
L(z) = V2rzt Ze (2v=1) D,
=t Distribution from simulation using 5000 samples (red) and Kolmogorov

and L(z) =0 for z < 0. limiting distribution (green)
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Simpler model ... call me the tumbling dice. . .

We suspect the die may be unfair on the values of 1 and 6

1-6 1 146

Pl—T P2:P3:P4:P5:6 PﬁzT

We watch n = 100 rolls and want to estimate the unfairness 6.

Rawlings (Wisconsin) Parameter estimation 13 / 48

We should live so long

The odds of obtaining this outcome are of the order
10—78

and until we sample this exact outcome of 100 die rolls again, the
conclusion is

ps(y;0) =0

and that's a highly inefficient way to analyze the experiment!

Rawlings (Wisconsin) Parameter estimation 15 / 48

The experimental measurement; n = 100 rolls

What are the odds of obtaining this outcome again by sampling?

py:0) = (é) (%) (129) (1;9) (%)
= (1/6)'® (1-6)°(1+6)
=15x10""% (1-—6)°1+6)%
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The frequency count of the measurement; n = 100 rolls

Because the rolls are assumed independent, the ordering of the outcomes
is not important. So then we look at frequency count
30

25

20

# 15|

10 -

value
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Our friend the multinomial distribution The likelihood for our measurement

Reinterpret the meaning of “measurement” to frequency count

y=[10 14 13 21 16 26

n!
_ Y1 Y2 Y6

p —p p ---p
(y)‘ y1|y2|y6| 1 P2 6

For our problem,

p(y;0)

100! (1g9>1° /6 (1/6) (1%9)26

= 101141 .. 26!
(1/6)100 (1 . 0)10(1 + 0)26

p(y;0) = 1.1 x 10"
p(y;0) =17x107" (1—6)0(1+6)%°
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The (negative) log likelihood for our measurement
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6 x107°
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p(y:0)
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0
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How many samples?

Still, the probability of obtaining the measured outcome
y=[10 14 13 21 16 26

is of the order
10~

and we require on the order 107 samples (simulations) before we have a
reasonable chance of concluding

ps(y;0) #0

Although considerably better than 1078 simulations, 107 simulations is still
inefficient.

We would like to obtain a good estimate of p(y;#) for a given 6 from a
single simulation.
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Measurement error? What measurement error? Likelihood of data with measurement error

Now let's introduce the concept of error in the measurement process.
Why?
The explanation of a nonmatching measurement y to the sampled density

@ It's often required for a good model of the sensor _
ps is the measurement error

@ Even discrete measurements may have error
Bush v. Gore, 2000, the hang[ng chad ps(y | x) = pu(y — x)
2011 WI Supreme Court election, the Waukesha county votes

. e . — 1 —3(y=x)R™ (y—x)
© It introduces nonzero probability without exact match of experiment ps(y [ x) = (27)7/2 |R|1/2 €

New random variable v, which distinguishes the state of the die from our

measurement of the state Use as our estimator

li ;0
Jim max ps(y | x; 0)

= X —|— \V4 VvV ~ N O R G
y 07 The limit R — 0 accounts for the zero measurement error case

We often model v as a zero mean normal with covariance R. Both
discrete and continuous v are useful.
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Equivalent estimator Likelihood with one simulation at each 6
1400
lim ma ;0 1200 +
RI—>0 0X ps(y | x;0)
li i — -0 1000 |
Jim min  —log ps(y | x; 6) -
lim min~ (n/2)log(2r) + (1/2) log(RI) + (1/2)(y —x)R™*(y — x) =
_)
- 1 p—1 & 600 ¢
min - (y =x)R™(y = x) n
400
@ Our good friend, least squares. 200
o If we keep sampling until some x = y, then all the other x's drop out 0 ‘ ‘ ‘
of the calculation as R — 0. This limit captures using the frequency -1 -0.5 0 0.5 1
count of the matches as the likelihood. 0
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Likelihood with one simulation at each 6;

Recall the true likelihood

the same versus different randomness

120 . . . 1400
100! ] 1200 | Same random numbers Different random numbers
— — 1000 -
< 80 = u = rand(nrolls,1);
%‘: 60 % 800 thetavec = linspace(-1, 1, 100);
&0 8 600 | for j = 1:length(thetavec) for j = 1:length(thetavec)
| 40 | 400l theta = thetavec(j); theta = thetavec(j);
p(1) = 1/6*%(1 - theta); p(1) = 1/6*%(1 - theta);
20 200 p(6) = 1/6x(1 + theta); p(6) = 1/6%(1 + theta);
0 ) ) ) 0 . . i P = cumsum(p); P = cumsum(p);
=1l -0.5 0 0.5 1 =1l -0.5 0 05 1 % do one simulation for each theta % do one simulation for each theta
4 0 for i = 1:nrolls u = rand(nrolls,1);
true likelihood one simulation rollx(i) = sum(u(i) >= P) + 1; for i = 1:nrolls
endfor rollx(i) = sum(u(i) >= P) + 1;
endfor
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Likelihood with one simulation at each 0; Sources of randomness in the likelihood function

the same versus different randomness

Same random numbers Different random numbers
‘ : : 1800 ; : ‘
1600 @ The measurement is random
1400 | .
= 1200 @ The samples, and hence the sampled density are random
%1288’ @ We have to live with the effects of the first one (or ask for more
a0 L
[°)
< 600! measurements).
400 @ We can reduce the effects of the second one with increased
200 |

simulation.

05 1 -1 205 05 1

or
or

In the limit of infinite samples, it won't matter, but we live in the world of
finite (often small!) samples.

Rawlings (Wisconsin) Parameter estimation 27 / 48 Rawlings (Wisconsin) Parameter estimation 28 / 48



Convergence with number of samples Computing the likelihood

From sampled density of x to measurement y

Data = Xx)ps(x)dx
t o w16 o p() = [ by | )pe(x)d

Measurement equation and sampled density
Measurement error

— ~ BN
y X+v v N(07R) p(y’x):pv(y_x) Ps(X):gZ(S(X—Xi)
Samples ;
Combining

xx=[7 15 22 21 10 25| 1

=[7 16 26 12 14 25] p(y) = /Pv(y—x);Z(S(X—x;)dx

i=1
—[21 13 8 20 20 1§ = gZPv(Y—Xi)
— (y x;)' y ;)
p(y)_ |R|1/2 Ze 2
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Convergence with number of samples Confidence intervals for the parameter

@ Now consider 6 to be a random variable with prior p(6)

o p(y | 9)p(0)
JZZ* POTY) =T 00y 0yde
3 w0 o< p(y | 0)p(0)
g oc L(y; 0)p(6)
20|
0] 05 g) 05 1 ) 05 (9 05 1 @ For a uniform (noninformative) prior on a chosen compact set
true likelihood s = 1000 samples p(0 | y) x L(y;0)

It's nice to establish convergence as s — oo (and R — 0), but
convergence won't be achieved in the class of applications of interest. @ May use a sampling strategy to obtain mean and variance of the
posterior p(6 | y).
@ May instead use a quadratic approximation of L(y; ) near 6°.
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Literature overview for parameter estimation of stochastic Literature overview for parameter estimation of stochastic

kinetic models kinetic models

@ Boys et al. (2008) propose generating many samples of the full
master equation consistent with the given measurement. They then
use Markov chain Monte Carlo to obtain the posterior distribution of
the parameter. The first step is computationally intractable for the
models of interest here.

e Tian et al. (2006) express the likelihood p(y|#) as a product of
transition densities p(y|0) = [[7_; p(Vi+1lyi,0). Each p(yit1lyi,0) is
evaluated using 5000 SSA simulations. A genetic algorithm is used to
maximize p(y|#). This procedure is computationally inefficient

_ o o because 5000 SSA simulations are used for each transition.
@ Golightly and Wilkinson (2008) use the Fokker-Planck approximation

of the master equation. This diffusion approximation is not generally
applicable in stochastic chemical kinetics.
@ For ODE models, Toni et al. (2009) approximate the likelihood by

measuring the distance between experimental data and a simulation.
They use sequential Monte Carlo to obtain the posterior.

@ Reinker et al. (2006) calculate the likelihood analytically using an
artificial maximum number of reactions that can occur within a given
time interval. They use a quasi-newton method to maximize the
likelihood. The assumption about the maximum number of reactions
is unrealistic.
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Literature overview for parameter estimation of stochastic Stochastic kinetics example — RNA dynamics in E. colit

kinetic models

A.Genetic construct of RNA expression in E. Coli
GFP

K133 Protein
vector
.. Sy

@ Poovathingal and Gunawan (2010) propose to evaluate likelihood zﬁﬁ:ﬁ%ﬂ
using the solution to the master equation. Their proposed function is r_’m_{mq el
not the likelihood, but some other merit function. They estimate the B.
solution of the master equation by SSA simulations. This is Reaction Scheme
computationally intensive and requires a binning strategy. They use DNA, & DNA,
directed evolution to optimize. DNA,—— DNA,

DNA, b DNA, + RNA

@ Model to explain mRNA dynamics in E. Coli
@ Three unknown parameters ki, ko, k3
'Poovathingal and Gunawan (2010); Golding et al. (2005)
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Experimental data generation Parameter estimate with one experiment

Contours of log(-log(L))

Contours of log(-log(L))

10 1

Simulate the model using SSA to generate data:
ki = 0.28, ko = 0.17, k3 = 0.4

20 — )
: 1 - . ,
el T : /
mRNA 10| I = | " "
; L = = 1 simulation 200 simulations
S — 0 S
0 f |
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time (min) Time (min) @ True parameters are k; = 0.277, ko = 0.1667, k3 = 0.4

o

0

1 experiment and 200 simulations
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Contours of log(-log(L))
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4
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Convergence with replication of experiments

Parameter estimation

Gontours of log(-og(L))

01 02 03 04 05 06 07 08 09 1
3
2

200 experiments and 200 simulations

37 / 48
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@ Assume that the true value of k; is known

@ Likelihood is nonsmooth with only one experiment and one simulation
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01 =4

01 02 03 04 05 06 07 08 09
3
2

1 experiment and 1 simulation

Parameter estimation

Contours of log(-log(L))

02 03 04 05 06 07 08 09
2

@ True parameters are k; = 0.277, ko = 0.1667, k3 = 0.4

@ Assume that the true value of k; is known

1
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Parameter estimate with one experiment

Contours of log(~log(L))

1 experiment and 100 simulations

o Likelihood is nonsmooth with only one experiment and one simulation
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Convergence with replication of experiments What's left to do? Lots!

o fiog-o ——
:
@ The optimization desirables: efficient methods to deal with high
dimensional parameter vector, ill-conditioned estimation problem,
noisy likelihood, and constraints.
o Adaptively decide when and by how much to increase sampling to
reduce effects of noise

01 02 03 04 05 06 07 08 09 1

1

I % @ Criteria for termination

1 experiment and 100 simulations 100 experiments and 100 simulations
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What's left to do? What's left to do?

Experimentalists

@ Do the models handle the experiments of interest

Analysts/Probabilists/Statisticians

@ How to efficiently calculate parametric derivatives (gradients) e Are the data demands realistic
@ How to efficiently calculate (approximate) confidence intervals o Feedback on: (i) application with relevant datasets; (ii) conceptual
@ lIssues of convergence, variability, bias; effects of sample size framework; (iii) software implementation

o Efficiency, accuracy, robustness, convenience
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What's left to do? Acknowledgment

Software designers

@ To have wide impact, software tools have to be developed!

@ Who are the end users? How much experience is required?
JBR would like to thank Rishi Srivastava and Ankur Gupta of

@ What is an appropriate interface for the expected users? The expert
S i s UW-Madison for helpful feedback on the presentation.

users? Do they use the same interface? How do we support software
for multiple user groups?

How do we maintain and extend the first generation software? How
do we obtain necessary user feedback?

@ What is the expected shelf-life of the developed methods?
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