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Modeling in Systems Biology  

Component Information 

Mathematical Model 

S 

=  

S  v = 0 

vmin,i  vi  vmax,i 

Network Reconstruction 

Gather information 
about important 
components and 

component 
interactions in 

biological networks

Compare model 
predictions to 

experimental data, 
either 

retrospectively or 
prospectively 

Organize and 
assemble 

component 
information at a 

systems level using 
a textual, graphical, 

or mathematical 
representation 

Convert the 
reconstruction into a 

model by 
introducing 

variables and 
equations based on 

chemical and 
physical principles

Experimental Data 

 0  0 -1  1 0  0 -1  0 1 
 0 -1  1  0 0 -1  0  1 0 

 1  0  0 -1 1  0  0 -1 0  
 0  0 -1  0 1  0 -1  0 1 

-1  0 -1  1 0  0 -1  0 1 
-1  0  1  0 1  0  0 -1 0  
 0  0  1  1 0  0 -1  0 1 
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Constraints on Metabolic Networks  

1. Steady-State Mass Balance Constraints 

2. Enzyme Capacity Constraints:   vj  

3. Thermodynamic Constraints: vj  0 

4. Regulatory Constraints:  ,  = 0 if associated 
genes are un-expressed 

For each metabolite:  

sij vproduce= -sij vconsume 

For all metabolites:  

S v = 0  

v1 

v3 

v2 v4 
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Constraint-Based Analysis 

How often have I said to you that when 

you have eliminated the impossible, 

whatever remains, however improbable, 

must be the truth? 

–Sherlock Holmes, A Study in Scarlet 

Application of 

Constraints 

Genomics, Physiology 

and  Biochemistry 

Energy and  

Biomass Constituents 

Prediction of  

Cellular Phenotypes 

v1 

v3 

v2 

v1 

v3 

v2 

Application of Constraints 

Stochiometric, Thermodynamic,  

Enzyme Capacity, Regulatory 

S  v = 0 

vmin,i  vi  vmax,i 

Mathematical Representation of Constraints 
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Exploring Biochemical Networks 

by Integrating Models & Data 

1. Evaluating Network Structure:  

– Metabolism and Regulation 

– Escherichia coli 

– Genomic and phenotypic data 

2. Evaluating Network Usage:  

– Metabolism 

– Shewanella oneidensis MR-1 

– Genomic, transcriptomic, and phenotypic data 
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>600 Metabolites 
>900 Reactions 
>900 Genes 

METABOLISM 

~100 Transcription Factors 
~500 Gene Targets 
~50 Stimuli 

REGULATION 

Reed, Vo, Schilling, and Palsson. Genome 
Biology. 4:R54.1-R54.12 (2003)  

Covert, Knight, Reed, Herrgard, and 
Palsson. Nature. 429: 92-96 (2004). 

How do we know if these networks are correct? 
Are we missing nodes or connections? 
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Model Driven Discovery Via High Throughput Testing 

Growth Data Comparisons: Two Failure Modes 
   1. Predicted Growth but NO Experimental Growth 
         - Missing regulation or falsely included reactions  
   2. Experimental Growth but NO Predicted Growth   
         - Missing metabolic transport or enzymatic reactions 
         - Incorrect regulation 
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Iterative Methods for Enzyme Identification 

METABOLIC
RECONSTRUCTION

Reed et al. PNAS 103(46):17480-4 

Literature Searches 

Bioinformatics Tools 
•Sequence Based Methods 

•Context Based Methods 
(eg. phylogenetic profiles) 

Expression Data 
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Integrated Models of Metabolism 

and Regulation 
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Approach for Relaxing Regulatory 
Constraints to Improve Accuracy 

Metabolic Model 

Integrated Model 
Modified Integrated Model 

Barua, Kim and Reed. PLoS Comput 
Biol 6(10):e1000970 (2010) 

OPTIMIZATION PROBLEM 
Find the MINIMUM number of 

genes (currently OFF) that must 
be turned ON. 
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Analysis of ~32,000 E. coli Mutant  

Growth Phenotypes 

Reg. Model Incorrect 

Both Models Incorrect 

Both Models Correct 

Reg. Model Correct 

~
2
3
0
 M

u
ta

n
ts

 

~130 Conditions 

Data from ASAP Database 
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How Many Changes Are Needed 
to Correct Each False Prediction? 

1 2 3 4 5 6 7 8 9 10

10

100

1000

3000

Number of Genes

 

 

Before Corrections

Total of 3,079 Cases (+/+/-; exp/met/metreg) 
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E. coli’s Regulation of D-Alanine Transporter 

CycA cycA 

Gene Protein 

Lrp 

X 

Transcription 
Factor 

Time (Hours) 

O
D

6
0
0
 

No Leucine 

Lrp Active 

CycA Not Expressed 

Experimental Result: 
E.coli grows on D-alanine 

Modeling Result: 
Transporter is not expressed  No 
growth 

Barua, Kim and Reed. PLoS Comput Biol 6(10) (2010) 
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Corrections 

1 2 3 4 5 6 7 8 9 10

10

100

1000

3000

Number of Genes

 

 

Before Corrections

After Corrections

Before 3,079 Cases; After 445 Cases  
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Exploring Biochemical Networks 

by Integrating Datasets 

1. Evaluating Network Structure:  

– Metabolism and Regulation 

– Escherichia coli 

– Genomic and phenotypic data 

2. Evaluating Network Usage:  

– Metabolism 

– Salmonella typhimurium LT2 and Shewanella 
oneidensis MR-1 

– Genomic, proteomic, transcriptomic, and 
phenotypic data 
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S. typhimurium Infection Requires Survival &  

Growth in Host-Cell Environment 

Images From: NA Buchmeier and F Heffron. 
Infection and Immunity. 59(7):2232-8 (1991) 

1μm 

1μm 
What is the intracellular environment in the host 

cell providing to the bacteria? 
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Data from Shi et al. J Biol Chem 281: 29131-40 

Blocked 
(32%) 

Suboptimal 
(29%) 

Optimal 
(38%) 

Reaction 
Distribution 

Blocked 
(12%) 

Suboptimal 
(26%) 

Optimal 
(62%) 

Detected Protein 
Distribution 

Finley & Brumell. Phil. Trans. R. Soc. Lond. B. 
355:623-31-(2000) 

Optimal 
Biomass 

By-Products 

Blocked 
Pathways 

Nutrients Supplied  
by Host Cell 

Blocked Reactions (15 out of 129) 
Superoxide Dismutase 
Amino Acid tRNA Synthetases 
Cofactor Biosynthesis  

•Heme 
•Ubiquinone 

Suboptimal Reactions (34 out of 129) 
Peroxidases  
Respiration 

•Cytochrome bd oxidase 
•DMSO reductase 

Fermentation 
•Lactate Dehydrogenase 
•Pyruvate Formate Lyase 

Futile Cycles 
•Phosphoenolpyruvate Synthase & Pyruvate Kinase 
•Fructose Bisphosphatase & Phosphofructokinase 

Purine Biosynthesis (4)  
Amino Acid Biosynthesis (9): 

•Threonine, Cysteine, Arginine, Asparagine 
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Shewanella Growth and Non-Growth 

Associated ATP Requirements 

GAR = 220.2 
(mmol/gAFDW) 

NGAR = 1.03 
(mmol/gAFDW/hr) 

The high GAR is unrealistic. Why is MR-1 
metabolically inefficient under these conditions? 
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Characterization of Reactions  
(Aerobic Growth on Lactate) 

Hypothesis: 
Expect High Expression 

of Optimal Genes 

Expect Low Expression 
of Suboptimal Genes 

Pinchuk et al. PLoS Comp Biol. 6(6) (2010) 
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Expression of Optimal and Suboptimal Genes 

Potential Futile Cycles: 
•Pyruvate Kinase + Phosphoenolpyruvate synthase 
•Phosphoenolpyruvate carboxylase + Malic enzyme 
•Fatty acid synthesis + degradation 

Less Efficient Enzymes: 
•Ndh and Nqr > Nuo 

Data from FedEx 2  
Experiment from  
M3D Database at BU 

Pinchuk et al. PLoS Comp Biol. 6(6) (2010) 
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Possible Reasons for Less Efficient 

Growth (High apparent GAR) 

• Futile Cycling 

– Three times lactate uptake rate: GAR ~80 

• Protein Turnover 
– Each peptide bond hydrolyzed 7 times: GAR ~80 

• Inefficient Use of Electron Transport Chain 

– 0.5 to 2.5 ATP per electron pair 

– Simulations done with 1.7 ATP per electron pair 

– Using 0.5 ATP per electron pair: GAR ~80 

Pinchuk et al. PLoS Comp Biol. 6(6) (2010) 
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Phenotypes 

MR-1 MR-1 maeB 

sfcA 

cox 

cox-cco 

Deletion of malic enzymes improves growth 

 Futile cycle involving malic enzyme 

Deletion of Cox-Cco improves growth 

 MR-1 uses Cyd (2H+/2e-) 

Pinchuk et al. PLoS Comp Biol. 6(6) (2010) 
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Networks 

Metabolic Engineering: Adjust metabolic behavior by 
engineering strains to produce useful chemicals 

Drugs Commodity 
Chemicals 

Biofuels 

Alper & Stephanopoulos 
Nat Rev Microbiol (2009) 

Sorona ® 
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Mutant Prediction Methods 
G

ro
w

th
 R

a
te

 

Wildtype Solution Space 

Knockout Solution Space 

FBA 

MOMA 

Metabolic Model 

Some Non-Essential Flux 

Segre, Vitkup, 

and Church. 
PNAS, 99(23): 

15112-7 
(2002) 

Segre, Vitkup, and Church. 

PNAS. 99(23)15112-7 (2002) 
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What Happens if Cells Evolve?  

KO Day 1 Day 2 

Faster growing cells outcompete others and 
select for cells with higher growth rates 

pck evolved on  

-ketoglutarate 

Day of Evolution 

G
ro

w
th

 R
a
te

 (
1
/h

r) 

Day … 

Fong et al. Nature Genetics. 

36(10): 1056-1058 (2004) 



UW-Madison, Chemical & Biological Engineering 

26 

OptKnock: Identifies Mutants with Coupled Biomass & 
Metabolite Production 

Finds reactions, that if removed, couple biomass production to metabolite 

production (ie. higher growth =higher production) 

So even if mutants initially have low production, by adaptively evolving strains using 
growth rate as selection pressure, the mutants should improve their productivity 

Burgard & Maranas. Biotechnol & Bioeng. 
84(6):647-657 (2003) 



UW-Madison, Chemical & Biological Engineering 

27 

Benefit of Considering Genes and Regulation 
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Deleting by Gene versus Reaction 

1.  200 Total OptKnock Strategies 
• 50 Double Reaction Deletions 
• 50 Triple Reaction Deletions 
• 50 Quadruple Reaction Deletions 
• 50 Quintuple Reaction Deletions 

2. Mapped reaction deletions to gene 
deletions 
• OptKnock Strategies had between 

2 and 10 genes 

3. Found OptORF strategies with the 
same number of gene deletions 
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Deleting by Gene versus Reaction 

Number of Gene Deletions Number of Gene Deletions 

G
ro

w
th

 R
a
te

 (
1
/h

r)
 

E
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o
l 
P
ro

d
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%
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h
e
o
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l)
 

15% OptKnock  
strains are not viable 

Kim and Reed. BMC Systems Biol 4:53 (2010) 
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Adaptive Evolutionary Outcomes are 
Consistent with Regulatory Predictions 

Data from S.S. Fong et al. Biotech & 
Bioeng (2005) 

Data from S.S. Fong et al. Nature 

Genetics. (2004) 

Kim and Reed. BMC Systems Biol 4:53 (2010) 
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No. of Gene Deletions No. of Gene Deletions 
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80% OptKnock strains are 
not predicted to be viable 

Transcriptional Regulation Restricts 
Growth and Ethanol Production  

Kim and Reed. BMC Systems Biol 4:53 (2010) 



UW-Madison, Chemical & Biological Engineering 

32 Patterns of Mutations for  
Improving Ethanol Production 

Correlated Mutations: 
•gntR and tpiA 
•pflAB and tdcE 
•ptsH, pta, and eutD 

Anti-Correlated Mutations: 
•arcA and fnr 
•pgi and tpi (and gntR) 
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ETHANOL:  

Gene Deletions 

Gene Over-

Expression 

Growth 

Rate  

Ethanol 

Production 
(% max yield) 

fnr pflB tdcE pgi edd 0.225 86.2% 

fnr pflB tdcE tpi edd 0.235 90.5% 

fnr pflB tdcE tpi gdhA edd 0.214 91.4% 

arcA pta eutD tpi ptsH edd 0.192 91.6% 

ISOBUTANOL: 

Gene Deletions 

Gene Over-

Expression 

Growth 

Rate  

Isobutanol 

Production 
(% max yield) 

adhE gdhA 0.223 89.5% 

gntR adhE pgi 0.128 93.8% 

adhE tpi edd+fbp 0.128 94.3% 

adhE pntA nuo edd+fbp 0.110 95.1% 

adhE pntA gdhA edd+fbp 0.102 95.5% 

Strains for Ethanol and Isobutanol 
(via BCAA pathways) Production 
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Mutations 
fnr pflAB 
tdcE pgi 

+edd 

Predicted Ethanol Yield: 
86% 

Predicted Growth Rate: 
0.225 hr-1 

Strategy with Gene 
Deletions & Gene 
Over-expression 
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Strain Design Summary 

• OptORF is general and can be applied to other 
microbes or for production of other products (eg. 
isobutanol). 

• Modeling accounts for the local and global affect 
of mutations to predict behaviors. 

• Relatively easy to couple growth and ethanol 
production under anaerobic conditions, OptORF 
provides simplest genetic strategies. 

• Can identify novel metabolic engineering 
strategies. 



UW-Madison, Chemical & Biological Engineering 

37 

Concluding Comments 

• Genome sequencing has enabled 
the rapid development of genome-
scale metabolic models. 

• Models can be to predict or 

describe cellular behavior 

• Models can provide context for experimental data. New 
methods for using ‘omics’ data to further constrain 
models are appearing (e.g. gene expression data). 

• Model-data inconsistencies can be interesting, they can 

indicate problems with models, data, and/or our 
understanding of biological networks. 
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