Using Optimization to Explore and Leverage Biochemical Networks

Dept of Chemical & Biological Engineering University of Wisconsin- Madison

W UW-Madison, Chemical & Biological Engineering

Modeling in Systems Biology

Gather information about important components and component interactions in biological networks

Compare model predictions to experimental data, either retrospectively or prospectively

Organize and assemble component information at a systems level using a textual, graphical, or mathematical representation

Convert the reconstruction into a model by introducing variables and equations based on chemical and physical principles

Constraints on Metabolic Networks

1. Steady-State Mass Balance Constraints

UW-Madison, Chemical & Biological Engineering

Constraint-Based Analysis

How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?

-Sherlock Holmes, <u>A Study in Scarlet</u>

W UW-Madison, Chemical & Biological Engineering

Exploring Biochemical Networks by Integrating Models & Data

1. Evaluating Network Structure:

- Metabolism and Regulation
- Escherichia coli
- Genomic and phenotypic data
- 2. Evaluating Network Usage:
 - Metabolism
 - Shewanella oneidensis MR-1
 - Genomic, transcriptomic, and phenotypic data

METABOLISM REGULATION

How do we know if these networks are correct? Are we missing nodes or connections?

Reed, Vo, Schilling, and Palsson. Genome Biology. 4:R54.1-R54.12 (2003) UW-Madison, Chemical & Biological Engineering ~100 Transcription Factors ~500 Gene Targets ~50 Stimuli

Covert, Knight, Reed, Herrgard, and Palsson. Nature. 429: 92-96 (2004).

Model Driven Discovery Via High Throughput Testing

Iterative Methods for Enzyme Identification

UW-Madison, Chemical & Biological Engineering

Reed et al. PNAS 103(46):17480-4

Integrated Models of Metabolism and Regulation

9

🔰 UW-Madison, Chemical & Biological Engineering

Approach for Relaxing Regulatory Constraints to Improve Accuracy

Barua, Kim and Reed. *PLoS Comput Biol* 6(10):e1000970 (2010)

Analysis of ~32,000 *E. coli* Mutant Growth Phenotypes

~130 Conditions

Reg. Model CorrectBoth Models IncorrectReg. Model IncorrectBoth Models Correct

Data from ASAP Database UW-Madison, Chemical & Biological Engineering

Metabolic network ^a	iJR904	
Regulatory network ^b	<i>i</i> MC104	
Total comparisons ^c	32,050	
Rule correction cases (+/+/-)	3,079	
Rescue cases (-/+/-)	2,041	
Integrated model accuracy ^d	23,670 (73.9%)	

How Many Changes Are Needed to Correct Each False Prediction?

E. coli's Regulation of D-Alanine Transporter

Effect of Only 11 Model Corrections

Before 3,079 Cases; After 445 Cases

Exploring Biochemical Networks by Integrating Datasets

- 1. Evaluating Network Structure:
 - Metabolism and Regulation
 - Escherichia coli
 - Genomic and phenotypic data
- 2. Evaluating Network Usage:
 - Metabolism
 - Salmonella typhimurium LT2 and Shewanella oneidensis MR-1
 - Genomic, proteomic, transcriptomic, and phenotypic data

W UW-Madison, Chemical & Biological Engineering

S. typhimurium Infection Requires Survival & ¹⁶ Growth in Host-Cell Environment

Carbohydrates Glucose Fructose Fucose Galactitol Galactonate Galactose Glucarate Galacatarate Gluconaate

Amino Acids Alanine Arginine Asparagine Cysteine Glutamicacid Histidine Isoleucine Leucine Lveine

Minerals & **Inorganic Molecules** Sodium Chloride Sulfate Potassium Phosphate Calcium Magnesium DMSO

What is the intracellular environment in the host cell providing to the bacteria?

Mannuse

Ribose

-Madison, Chemical & Biological Engineering

Melibiose Nucleosides N-acetylglucosamine N-acetylneuraminate Rhamnose Sorbitol Cellobiose 1,2propanediol

Inosine Hypoxanthine Deoxycytidine Thymidine Uracil Uridine Deoxyadenosine Adenosine Guanosine

Cytosine

Junie

Amines

Allantoin Carnitine Polvamine

Ethanolamine

Vitamins

Thiamine(B1) Pantothenate(B5)

Blocked Reactions (15 out of 129) Superoxide Dismutase Amino Acid tRNA Synthetases Cofactor Biosynthesis •Heme •Ubiquinone

Suboptimal Reactions (34 out of 129) Peroxidases Respiration •Cytochrome bd oxidase •DMSO reductase Fermentation

Lactate DehydrogenasePyruvate Formate Lyase

Futile Cycles

Phosphoenolpyruvate Synthase & Pyruvate Kinase
 Fructose Bisphosphatase & Phosphofructokinase
 Purine Biosynthesis (4)
 Amino Acid Biosynthesis (9):

• *Threonine, Cysteine, Arginine, Asparagine*

Shewanella Growth and Non-Growth Associated ATP Requirements

The high GAR is unrealistic. Why is MR-1 metabolically inefficient under these conditions?

GAR = 220.2 (mmol/gAFDW) NGAR = 1.03 (mmol/gAFDW/hr) UW-Madison, Chemical & Biological Engineering 18

Characterization of Reactions (Aerobic Growth on Lactate)

Expression of Optimal and Suboptimal Genes

Potential Futile Cycles:

• Pyruvate Kinase + Phosphoenolpyruvate synthase

• *Phosphoenolpyruvate carboxylase + Malic enzyme*

• Fatty acid synthesis + degradation

Less Efficient Enzymes:Ndh and Nqr > Nuo

Data from FedEx 2 Experiment from M3D Database at BU

W UW-Madison, Chemical & Biological Engineering Pinchuk et al. PLoS Comp Biol. 6(6) (2010)

Possible Reasons for Less Efficient Growth (High apparent GAR)

- Futile Cycling
 - Three times lactate uptake rate: GAR ~80
- Protein Turnover
 - Each peptide bond hydrolyzed 7 times: GAR ~80
- Inefficient Use of Electron Transport Chain
 - 0.5 to 2.5 ATP per electron pair
 - Simulations done with 1.7 ATP per electron pair
 - Using 0.5 ATP per electron pair: GAR ~80

S. oneidensis MR-1 Mutant Phenotypes

→ Futile cycle involving malic enzyme

Deletion of Cox-Cco improves growth \rightarrow MR-1 uses Cyd (2H+/2e-)

W-Madison, Chemical & Biological Engineering Pinchuk et al. PLoS Comp Biol. 6(6) (2010)

Leveraging Biochemical Networks

Metabolic Engineering: Adjust metabolic behavior by engineering strains to produce useful chemicals

Drugs

Commodity Chemicals

Sorona ®

Artemisinin

23

Alper & Stephanopoulos Nat Rev Microbiol (2009)

Mutant Prediction Methods

What Happens if Cells Evolve?

Faster growing cells outcompete others and select for cells with higher growth rates

Fong et al. Nature Genetics. 36(10): 1056-1058 (2004)

OptKnock: Identifies Mutants with Coupled Biomass & Metabolite Production

Knockout Production Capabilities

Finds reactions, that if removed, couple biomass production to metabolite production (ie. higher growth =higher production)

So even if mutants initially have low production, by adaptively evolving strains using growth rate as selection pressure, the mutants should improve their productivity

W UW-Madison, Chemical & Biological Engineering

Burgard & Maranas. *Biotechnol & Bioeng*. 84(6):647-657 (2003)

Benefit of Considering Genes and Regulation

Deleting by Gene versus Reaction

- 1. 200 Total OptKnock Strategies
 - 50 Double Reaction Deletions
 - 50 Triple Reaction Deletions
 - 50 Quadruple Reaction Deletions
 - 50 Quintuple Reaction Deletions
- 2. Mapped reaction deletions to gene deletions
 - OptKnock Strategies had between
 2 and 10 genes
- 3. Found OptORF strategies with the same number of gene deletions

Deleting by Gene versus Reaction

Adaptive Evolutionary Outcomes are **Consistent with Regulatory Predictions**

Data from S.S. Fong et al. Biotech & Bioeng (2005)

Data from S.S. Fong et al. Nature Genetics. (2004)

UW-Madison, Chemical & Biological Engine Kim and Reed. BMC Systems Biol 4:53 (2010)

Transcriptional Regulation Restricts Growth and Ethanol Production

-Madison, Chemical & Biological Engine Kim and Reed. BMC Systems Biol 4:53 (2010)

Patterns of Mutations for Improving Ethanol Production

OptORF (+Reg.)

Anti-Correlated Mutations:

- •arcA and fnr
- •pgi and tpi (and gntR)

W UW-Madison, Chemical & Biological Engineering

Correlated Mutations:

- •gntR and tpiA
- •*pflAB* and *tdcE*
- •ptsH, pta, and eutD

Strains for Ethanol and Isobutanol (via BCAA pathways) Production

ETHANOL: Gene Deletions	Gene Over- Expression	Growth Rate	Ethanol Production (% max yield)
Δfnr ΔpflB ΔtdcE Δpgi	edd	0.225	86.2%
Δfnr ΔpflB ΔtdcE Δtpi	edd	0.235	90.5%
Δfnr ΔpflB ΔtdcE Δtpi ΔgdhA	edd	0.214	91.4%
ΔarcA Δpta ΔeutD Δtpi ΔptsH	edd	0.192	91.6%
ISOBUTANOL: Gene Deletions	Gene Over- Expression	Growth Rate	Isobutanol Production (% max yield)
ISOBUTANOL: Gene Deletions ΔadhE ΔgdhA	Gene Over- Expression	Growth Rate 0.223	Isobutanol Production (% max yield) 89.5%
ISOBUTANOL: Gene Deletions $\Delta adhE \Delta gdhA$ $\Delta gntR \Delta adhE \Delta pgi$	Gene Over- Expression	Growth Rate 0.223 0.128	Isobutanol Production (% max yield) 89.5% 93.8%
ISOBUTANOL: Gene Deletions $\Delta adhE \Delta gdhA$ $\Delta gntR \Delta adhE \Delta pgi$ $\Delta adhE \Delta tpi$	Gene Over- Expression edd+fbp	Growth Rate 0.223 0.128 0.128	Isobutanol Production (% max yield) 89.5% 93.8% 94.3%
ISOBUTANOL: Gene Deletions $\Delta adhE \Delta gdhA$ $\Delta gntR \Delta adhE \Delta pgi$ $\Delta adhE \Delta tpi$ $\Delta adhE \Delta pntA \Delta nuo$	Gene Over- Expression edd+fbp edd+fbp	Growth Rate 0.223 0.128 0.128 0.110	Isobutanol Production (% max yield) 89.5% 93.8% 94.3% 95.1%

Strategy with Gene Deletions & Gene Over-expression

<u>Mutations</u> *∆fnr ∆pflAB ∆tdcE ∆pgi +edd*

Predicted Ethanol Yield: 86% Predicted Growth Rate: 0.225 hr⁻¹

W UW-Madison, Chemical & Biological Engi

Strain Design Summary

- OptORF is general and can be applied to other microbes or for production of other products (eg. isobutanol).
- Modeling accounts for the local and global affect of mutations to predict behaviors.
- Relatively easy to couple growth and ethanol production under anaerobic conditions, OptORF provides simplest genetic strategies.
- Can identify novel metabolic engineering strategies.

Concluding Comments

- Genome sequencing has enabled the rapid development of genomescale metabolic models.
- Models can be to predict or describe cellular behavior

- Models can provide context for experimental data. New methods for using 'omics' data to further constrain models are appearing (e.g. gene expression data).
- Model-data inconsistencies can be interesting, they can indicate problems with models, data, and/or our understanding of biological networks.

UW-Madison, Chemical & Biological Engineering

Acknowledgements

Research Group:

Dipak Barua (LANL)

Camo Cotten Josh Hamilton Joonhoon Kim

Bastian Niebel Wai Kit Ong Chris Tervo Trang Vu Xiaolin Zhang

Funding Sources:

<u>Metabolic</u> <u>Engineering</u> Christos Maravelias

Salmonella Collaborators:

Anu Raghunathan (MSSM) Simon Daefler (MSSM) _{Je} Sookil Shin (MSSM) _A Bernhard Palsson (UCSD)

Shewanella Collaborators:

Alex Beliaev (PNNL) Jim Fredrickson (PNNL) Oleg Geydebrekht (PNNL) Allan Konopka (PNNL) **Grigoriy Pinchuk** (PNNL) **Grigoriy Pinchuk** (PNNL) **S:** Samantha Reed (PNNL) Margie Romine (PNNL) Jessica De Ingeniis (Burnham) Andrei Osterman (Burnham) James Scott (Dartmouth)

