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1 Introduction

MOSEK is a software package for the solution of linear, mixed-integer linear, quadratic, mixed-integer quadratic,
quadratically constraint, and convex nonlinear mathematical optimization problems. MOSEK is particularly
well suited for solving large-scale linear and convex quadratically constraint programs using an extremely efficient
interior point algorithm. The interior point algorithm has many complex solver options which the user can specify
to fine-tune the optimizer for a particular model.

Furthermore, MOSEK can solve generalized linear programs involving nonlinear conic constraints, convex quadrat-
ically constraint and general convex nonlinear programs.

These problem classes can be solved using an appropriate optimizer built into MOSEK. All the optimizers available
in MOSEK are built for the solution of large-scale sparse problems. Current optimizers include:
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• Interior-point optimizer for all continuous problems
• Conic interior-point optimizer for conic quadratic problems
• Simplex optimizer for linear problems
• Mixed-integer optimizer based on a branch and cut technology

1.1 Licensing

Licensing of GAMS/MOSEK is similar to other GAMS solvers. MOSEK is licensed in three different ways:
• GAMS/MOSEK Base:

All continuous models
• GAMS/MOSEK Extended:

Same as GAMS/MOSEK Base, but also the solution of models involving discrete variables.
• GAMS/MOSEK Solver Link:

Users must have a seperate, licensed MOSEK system. For users who wish to use MOSEK within GAMS
and also in other environments.

For more information contact sales@gams.com. For information regarding MOSEK standalone or interfacing
MOSEK with other applications contact sales@mosek.com.

1.2 Reporting of Infeasible/Undbounded Models

MOSEK determines if either the primal or the dual problem is infeasible by means of a Farkas certificate. In
such a case MOSEK returns a certificate indicating primal or dual infeasibility. A primal infeasibility certificate
indicates a primal infeasible model and the certificate is reported in the marginals of the equations in the listing
file. The primal infeasibility certificate for a minimization problem

minimize cT x
subject to Ax = b,

x ≥ 0

is the solution y satisfying:
AT y ≤ 0, bT y > 0

A dual infeasibility certificate is reported in the levels of the variables in the listing file. The dual infeasibility
certificate x for the same minimization problem is

Ax = 0, cT x < 0

Since GAMS reports all model statuses in the primal space, the notion of dual infeasibility does not exist and
GAMS reports a status of unbounded, which assumes the primal problem is feasible. Although GAMS reports
the primal as unbounded, there is the possibility that both the primal and dual problem are infeasible. To check
if this is the case, the user can set appropriate upper and lower bounds on the objective variable, using the
(varible).LO and (variable).UP suffixes and resolve.

For more information on primal and dual infeasibility certificates see the MOSEK User’s manual at www.mosek.com.

1.3 Solving Problems in Parallel

If a computer has multiple CPUs (or a CPU with multiple cores), then it might be advantageous to use the
multiple CPUs to solve the optimization problem. For instance if you have two CPUs you may want to exploit
the two CPUs to solve the problem in the half time. MOSEK can exploit multiple CPUs.

Parallelized Optimizers

Only the interior-point optimizer in MOSEK has been parallelized.
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This implies that whenever the MOSEK interior-point optimizer should solve an optimization problem, then it will
try to divide the work so each CPU gets a share of the work. The user decides how many CPUs MOSEK should
exploit. Unfortunately, it is not always easy to divide the work. Also some of the coordination work must occur in
sequential. Therefore, the speed-up obtained when using multiple CPUs is highly problem dependent. However,
as a rule of thumb if the problem solves very quickly i.e. in less than 60 seconds, then it is not advantageous of
using the parallel option.

The parameter MSK IPAR INTPNT NUM THREADS sets the number of threads (and therefore the number of CPU’s)
that the interior point optimizer will use.

Concurrent Optimizer

An alternative to use a parallelized optimizer is the concurrent optimizer. The idea of the concurrent optimizer
is to run multiple optimizers on the same problem concurrently. For instance the interior-point and the dual
simplex optimizers may be applied to an linear optimization problem concurrently. The concurrent optimizer
terminates when the first optimizer has completed and reports the solution of the fastest optimizer. That way
a new optimizer has been created which essentially has the best performance of the interior-point and the dual
simplex optimizer.

Hence, the concurrent optimizer is the best one to use if there multiple optimizers available in MOSEK for the prob-
lem and you cannot say beforehand which one is the best one. For more details inspect the MSK IPAR CONCURRENT *
options.

1.4 The Infeasibility Report

MOSEK has some facilities for diagnosing the cause of a primal or dual infeasibility. They can be turned
on using the parameter setting MSK IPAR INFEAS REPORT AUTO. This causes MOSEK to print a report
about an infeasible subset of the constraints, when an infeasibility is encountered. Moreover, the parameter
MSK IPAR INFEAS REPORT LEVEL controls the amount info presented in the infeasibility report. We will
use the trnsport.gms example from the GAMS Model Library with increased demand (b(j)=1.6*b(j)) to make
the model infeasible. MOSEK produces the following infeasibility report

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

1 supply(seattle) none 3.500000e+002 0.000000e+000 1.000000e+000

2 supply(san-diego) none 6.000000e+002 0.000000e+000 1.000000e+000

3 demand(new-york) 5.200000e+002 none 1.000000e+000 0.000000e+000

4 demand(chicago) 4.800000e+002 none 1.000000e+000 0.000000e+000

5 demand(topeka) 4.400000e+002 none 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

which indicates which constraints and bounds that are important for the infeasibility i.e. causing the infeasibility.
The infeasibility report is divided into two sections where the first section shows which constraints that are
important for the infeasibility. In this case the important constraints are supply and demand. The values in the
columns Dual lower and Dual upper are also useful, because if the dual lower value is different from zero for a
constraint, then it implies that the lower bound on the constraint is important for the infeasibility. Similarly, if
the dual upper value is different from zero on a constraint, then this implies the upper bound on the constraint
is important for infeasibility.
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1.5 Nonlinear Programs

MOSEK can efficiently solve convex programs, but is not intended for nonconvex optimization. For nonconvex
programs, MOSEK can detect some nonconvexities and will print out a warning message and terminate. If
MOSEK does not detect nonconvexities for a nonconvex model, the optimizer may continue but stagnate. Hence
care must be taken when solving nonlinear programs if convexity is not immediately known.

1.6 Modeling Issues Involving Convex Programs

It is often preferable to model convex programs in seperable form, if it is possible. Consider the following example
of minizing an objective function f(x):

f(x) = log(a′ ∗ x)

where a ∈ <n is a parameter and x ∈ <n the decision variable. The equation implies an implicit constraint of
a′ ∗ x > 0. Unfortunately, domain violations can still occur because no restrictions are set on a′ ∗ x. A better
approach is to introduce an intermediate variable y:

f(x) = log(y)
y = a′ ∗ x
y ≥ 0

This accomplishes two things. It implies an explicit bound on a′∗x, thereby reducing the risk of domain violations.
Secondly, it speeds up computation since computations of gradients and Hessians in the first (non-seperable) form
are more expensive. Finally, it reduces the amount of memory needed (see the section on “Memory Options”)

2 Conic Programming

MOSEK is well suited for solving generalized linear programs involving nonlinear conic constraints. Conic pro-
gramming is useful in a wide variety of application areas1 including engineering and financial management .
Conic programming has been used, for example, in antenna array weight design, grasping force optimization,
finite impulse response (FIR) filter design, and portfolio optimization.

This section gives an overview of conic programming and how conic constraints are implemented in GAMS.

2.1 Introduction

Conic programs can be thought of as generalized linear programs with the additional nonlinear constraint x ∈ C,
where C is required to be a convex cone. The resulting class of problems is known as conic optimization and has
the following form:

minimize cT x
subject to Ax ≤ rc,

x ∈ [lx, ux]
x ∈ C

where A ∈ <m×n is the constraint matrix, x ∈ <n the decision variable, and c ∈ <n the objective function cost
coefficients. The vector rc ∈ <m represents the right hand side and the vectors lx, ux ∈ <n are lower and upper
bounds on the decision variable x.

1See M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming Linear Algebra and its
Applications, 284:193-228, Special Issue on Linear Algebra in Control, Signals and Image Processing. November, 1998.
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Now partition the set of decision variables x into sets St, t = 1, ..., k, such that each decision variables x is a
member of at most one set St. For example, we could have

S1 =

 x1

x4

x7

 and S2 =


x6

x5

x3

x2

 . (1.1)

Let xSt denote the variables x belonging to set St. Then define

C := {x ∈ <n : xSt ∈ Ct, t = 1, ..., k} (1.2)

where Ct must have one of the following forms:
• Quadratic cone: (also referred to as Lorentz or ice cream cone)

Ct =

x ∈ <nt

: x1 ≥

√√√√ nt∑
j=2

x2
j

 . (1.3)

• Rotated quadratic cone: (also referred to as hyberbolic constraints)

Ct =

x ∈ <nt

: 2x1x2 ≥
nt∑

j=3

x2
j , x1, x2 ≥ 0

 . (1.4)

These two types of cones allow the formulation of quadratic, quadratically constrained, and many other classes
of nonlinear convex optimization problems.

2.2 Implemention of Conic Constraints in GAMS

GAMS handles conic equations using the =C= equation type. The conic cases are written as:
• Quadratic cone:

x(‘1‘) = C = sum(i$[not sameas(i, ‘1‘)], x(i)); (1.5)

• Rotated quadratic cone:

x(‘1‘) + x(‘2‘) = C = sum(i$[not sameas(i, ‘1‘) and not sameas(i, ‘2‘)], x(i)); (1.6)

Note that the resulting nonlinear conic constraints result in “linear” constraints in GAMS. Thus the original
nonlinear formulation is in fact a linear model in GAMS. We remark that we could formulate conic problems as
regular NLP using constraints:
• Quadratic cone:

x(‘1‘) = G = sqrt[sum(i$[not sameas(i, ‘1‘)], sqr[x(i)])]; (1.7)

• Rotated quadratic cone: x(′1′) and x(′2′) are positive variables

2 ∗ x(‘1‘) ∗ x(‘2‘) = G = sum(i$[not sameas(i, ‘1‘) and not sameas(i, ‘2‘)], sqr[x(i)]); (1.8)

The example below illustrates the different formulations for conic programming problems. Note that the conic
optimizer in MOSEK usually outperforms a general NLP method for the reformulated (NLP) cone problems.

2.3 Example

Consider the following example (cone2.gms) which illustrates the use of rotated conic constraints. We will give
reformulations of the original problem in regular NLP form using conic constraints and in conic form.
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The original problem is:

minimize
∑

i
di

xi

subject to atx ≤ b
xi ∈ [li, ui], li > 0, di ≥ 0, i = 1, 2, ..., n

(1.9)

where x ∈ <n is the decision variable, d, a, l, u ∈ <n parameters, and b ∈ < a scalar parameter. The original
model (1.9) can be written in GAMS using the equations:

defobj.. sum(n, d(n)/x(n)) =E= obj;
e1.. sum(n, a(n)*x(n)) =L= b;
Model orig /defobj, e1/;
x.lo(n) = l(n);
x.up(n) = u(n);

We can write an equivalent NLP formulation, replacing the objective function and adding another constraint:

minimize
∑

i diti
subject to atx ≤ b

2tixi ≥ 2, i = 1, ..., n
x ∈ [l, u], l > 0, di ≥ 0

(1.10)

where t ∈ <n is a new decision variable. The GAMS formulation of this NLP (model cnlp) is:

defobjc.. sum(n, d(n)*t(n)) =E= obj;
e1.. sum(n, a(n)*x(n)) =L= b;
conenlp(n).. 2*t(n)*x(n) =G= 2;

Model cnlp /defobjc, e1, conenlp/;
x.lo(n) = l(n);
x.up(n) = u(n);

We can change the equality to an inequality since the parameter di ≥ 0 and we are dealing with a minimization
problem. Also, note that the constraint conenlp(n) is almost in rotated conic form. If we introduce a variable
z ∈ <n, zi =

√
2, then we can reformulate the problem using conic constraints as:

minimize
∑

i diti
subject to atx ≤ b

zi =
√

2
2tixi ≥ z2

i , i = 1, ..., n
x ∈ [l, u], l > 0, di ≥ 0

(1.11)

The GAMS formulation using conic equations =C= is:

defobjc.. sum(n, d(n)*t(n)) =E= obj;
e1.. sum(n, a(n)*x(n)) =L= b;
e2(n).. z(n) =E= sqrt(2);
cone(n).. x(n) + t(n) =C= z(n);

Model clp /defobjc, e1, e2, cone/;
x.lo(n) = l(n);
x.up(n) = u(n);

Note that this formulation is a linear program in GAMS, although the constraints cone(n)... represent the
nonlinear rotated quadratic cone constraint.

The complete model is listed below:
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Set n / n1*n10 /;
Parameter d(n), a(n), l(n), u(n);
Scalar b;

d(n) = uniform(1,2);
a(n) = uniform (10,50);
l(n) = uniform(0.1,10);
u(n) = l(n) + uniform(0,12-l(n));

Variables x(n);
x.l(n) = uniform(l(n), u(n));
b = sum(n, x.l(n)*a(n));

Variables t(n), z(n), obj;
Equations defobjc, defobj, e1, e2(n), cone(n), conenlp(n);

defobjc.. sum(n, d(n)*t(n)) =E= obj;
defobj.. sum(n, d(n)/x(n)) =E= obj;
e1.. sum(n, a(n)*x(n)) =L= b;
e2(n).. z(n) =E= sqrt(2);
cone(n).. x(n) + t(n) =C= z(n);
conenlp(n).. 2*t(n)*x(n) =G= 2;

Model clp /defobjc, e1, e2, cone/;
Model cnlp /defobjc, e1, conenlp/;
Model orig /defobj, e1/;

x.lo(n) = l(n);
x.up(n) = u(n);

Solve clp min obj using lp;
Solve cnlp min obj using nlp;
Solve orig min obj using nlp;

3 The MOSEK Options

MOSEK works like other GAMS solvers, and many options can be set in the GAMS model. The most relevant
GAMS options are reslim, nodlim, optca, optcr, and optfile. The option iterlim works only for the
simplex optimizer. A description of all available GAMS options can be found in Chapter ”Using Solver Specific
Options”.

We remark that MOSEK contains many complex solver options, many of which require a deep understanding
of the algorithms used. For a complete description of the more than 175 MOSEK options, consult the MOSEK
User’s Guide, available online at www.mosek.com.

If you specify ”<modelname>.optfile = 1;” before the SOLVE statement in your GAMS model, MOSEK will
then look for and read an option file with the name mosek.opt (see ”Using Solver Specific Options” for general
use of solver option files). The syntax for the MOSEK option file is

optname value

with one option on each line.

For example,

MSK_IPAR_INTPNT_MAX_ITERATIONS 20
MSK_IPAR_INTPNT_SCALING 1
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The first option specifies the maximum number of interior-point iterations, in this case 20. The seond option
indicates a scaling option of 1, which is no scaling.

We remark that users can also use symbolic constants in place of numerical values. For example, for the scaling
option users could use MSK SCALING NONE in place of the value 1. For a complete list of applicable symbolic
constants, consult the MOSEK parameter list available online at www.mosek.com.

3.1 Memory Considerations for Nonlinear Problems

The GAMS workfactor option can be used to increase the amount of memory available to MOSEK. The general
syntax is

(modelname).workfactor = (value)

with a default value of 1. See the section on “Using Solver Specific Options” for details. If GAMS/MOSEK runs
out of memory, an error message is printed out:

*** GAMS/MOSEK interface error.

The size estimate for Hessian of Lagrangian is too small.
Try to increase workfactor option from 1 to a larger value.

GAMS/MOSEK estimates the size of the Hessian as 5∗(number of nonlinear variables)∗(workfactor). Because
of symmetry, the size of the Hessian is bounded by

Hd ∗ (number of nonlinear variables)2/2

where Hd detotes the density of the Hessian and Hd ∈ [0, 1]. Therefore, one can choose the workfactor as:

workfactor = Hd ∗ (number of nonlinear variables) ∗ /(5 ∗ 2)

Note that for a seperable model (see “Modeling Issues Involving Convex Programs”), the workfactor can in fact
be reduced to 1/5.

4 Summary of MOSEK Options

4.1 General and Preprocessing Options

MSK IPAR OPTIMIZER
optimizer selection

MSK DPAR OPTIMIZER MAX TIME
time limit

MSK IPAR PRESOLVE ELIMINATOR USE
switch for free variable elimination

MSK IPAR PRESOLVE ELIM FILL
fill-in control during presolve

MSK IPAR PRESOLVE LINDEP USE
linear dependency check

MSK IPAR PRESOLVE LINDEP WORK LIM
maximum work for finding linear dependencies

MSK IPAR PRESOLVE USE
switch for presolve

MSK IPAR CACHE SIZE L1
L1 cache size used

MSK IPAR CACHE SIZE L2
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L2 cache size used
MSK IPAR CPU TYPE

specifies the CPU type
MSK SPAR PARAM READ FILE NAME

name of a secondary MOSEK option file
MSK IPAR CONCURRENT NUM OPTIMIZERS

maximum number of optimizers during concurrent run
MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

priority of dual simplex algorithm in concurrent run
MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

priority of free simplex algorithm in concurrent run
MSK IPAR CONCURRENT PRIORITY INTPNT

priority of interior point algorithm in concurrent run
MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

priority of primal simplex algorithm in concurrent run
MSK IPAR INFEAS REPORT AUTO

switch for infeasibility report
MSK IPAR INFEAS REPORT LEVEL

output level for infeasibility report

4.2 Problem Data Options

MSK DPAR DATA TOL AIJ
zero tolerance for matrix coefficients

MSK DPAR DATA TOL AIJ LARGE
warning for large coefficients in matrix

MSK DPAR DATA TOL BOUND INF
bound value for infinity

MSK DPAR DATA TOL BOUND WRN
warning for large bounds

MSK DPAR DATA TOL CJ LARGE
warning for large coefficients in objective

MSK DPAR DATA TOL C HUGE
error for huge coefficients in objective

MSK DPAR DATA TOL QIJ
zero tolerance for Q matrix coefficients

MSK DPAR DATA TOL X
tolerance for fixed variables

MSK IPAR CHECK CONVEXITY
level of convexity check for quadratic problems

MSK DPAR LOWER OBJ CUT
lower objective limit

MSK DPAR LOWER OBJ CUT FINITE TRH
upper objective limit threashold

MSK DPAR UPPER OBJ CUT
upper objective limit

MSK DPAR UPPER OBJ CUT FINITE TRH
lower objective limit threashold

4.3 Output Options
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MSK IPAR LOG BI
output control for basis identification

MSK IPAR LOG INTPNT
output level of the interior-point optimizer

MSK IPAR LOG MIO
output level for mixed integer optimizer

MSK IPAR LOG PRESOLVE
output level for presolve

MSK IPAR LOG SIM
output level for simplex

MSK IPAR LOG BI FREQ
frequency of log output of basis identification

MSK IPAR LOG SIM FREQ
frequency of log output of simplex optimizer

MSK IPAR LOG MIO FREQ
frequency of log output of mixed integer optimizer

MSK IPAR WARNING LEVEL
warning level

MSK IPAR MAX NUM WARNINGS
maximum number of warnings

4.4 Interior Point Optimizer Options

MSK IPAR INTPNT BASIS
switch for basis identification

MSK DPAR INTPNT CO TOL DFEAS
dual feasibility tolerance for the conic interior-point optimizer

MSK DPAR INTPNT CO TOL INFEAS
infeasibility control for the conic interior-point optimizer

MSK DPAR INTPNT CO TOL MU RED
relative complementarity tolerance for the conic interior-point optimizer

MSK DPAR INTPNT CO TOL NEAR REL
termination tolerances for near optimal for the conic interior-point optimizer

MSK DPAR INTPNT CO TOL PFEAS
primal feasibility tolerance for the conic interior-point optimizer

MSK DPAR INTPNT CO TOL REL GAP
relative optimality tolerance for the conic interior-point optimizer

MSK IPAR INTPNT DIFF STEP
switch for different step sizes

MSK IPAR INTPNT MAX ITERATIONS
iteration limit for the interior-point optimizer

MSK DPAR INTPNT NL MERIT BAL
balance for complementarity and infeasibility

MSK DPAR INTPNT NL TOL DFEAS
dual feasibility tolerance for nonlinear problems

MSK DPAR INTPNT NL TOL MU RED
relative complementarity tolerance for nonlinear problems

MSK DPAR INTPNT NL TOL NEAR REL
termination tolerances for near optimal for nonlinear problems

MSK DPAR INTPNT NL TOL PFEAS
primal feasibility tolerance for nonlinear problems

MSK DPAR INTPNT NL TOL REL GAP
relative optimality tolerance for nonlinear problems
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MSK DPAR INTPNT NL TOL REL STEP
relative step size to boundary for nonlinear problems

MSK IPAR INTPNT NUM THREADS
number of threads for interior-point optimizer

MSK IPAR INTPNT OFF COL TRH
offending column selection

MSK IPAR INTPNT ORDER METHOD
ordering strategy selection

MSK IPAR INTPNT REGULARIZATION USE
switch for regularization

MSK IPAR INTPNT SCALING
scaling selection for interior-point optimizer

MSK IPAR INTPNT SOLVE FORM
solve primal or the dual problem with interior-point optimizer

MSK IPAR INTPNT STARTING POINT
starting point for interior-point optimizer

MSK DPAR INTPNT TOL DFEAS
dual feasibility tolerance

MSK DPAR INTPNT TOL DSAFE
initial dual starting control

MSK DPAR INTPNT TOL INFEAS
infeasibility control

MSK DPAR INTPNT TOL MU RED
relative complementarity tolerance

MSK DPAR INTPNT TOL PATH
central path following for interior-point optimizer

MSK DPAR INTPNT TOL PFEAS
primal feasibility tolerance

MSK DPAR INTPNT TOL PSAFE
initial primal starting control

MSK DPAR INTPNT TOL REL GAP
relative optimality tolerance

MSK DPAR INTPNT TOL REL STEP
relative step size to boundary

MSK IPAR INTPNT MAX NUM COR
maximum number of correctors

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS
number of steps to be used by the iterative refinement

USE BASIS EST
use MOSEK basis estimation in case of an interior solution

4.5 Simplex Optimizer and Basis Identification Options

MSK IPAR SIM DUAL CRASH
dual simplex crash

MSK IPAR SIM DUAL SELECTION
dual simplex pricing selection

MSK IPAR SIM HOTSTART
controls simplex hotstart

MSK IPAR SIM MAX ITERATIONS
simplex iteration limit

MSK IPAR SIM MAX NUM SETBACKS
maximum number of setbacks
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MSK IPAR SIM PRIMAL CRASH
primal simplex crash

MSK IPAR SIM PRIMAL SELECTION
primal simplex pricing selection

MSK IPAR SIM REFACTOR FREQ
refactorization frequency

MSK IPAR SIM SCALING
scaling selection for simplex optimizer

MSK IPAR SIM SOLVE FORM
solve primal or the dual problem with simplex optimizer

MSK IPAR BI CLEAN OPTIMIZER
simplex optimizer section after basis identification

MSK DPAR BI LU TOL REL PIV
relative pivot tolerance for basis identification

MSK IPAR BI MAX ITERATIONS
maximum number of simplex iterations after basis identification

MSK IPAR BI IGNORE MAX ITER
continues BI in case of iteration limit

MSK IPAR BI IGNORE NUM ERROR
continues BI in case of numerical error

4.6 Mixed Integer Optimizer Options

MSK IPAR MIO BRANCH DIR
control branching directions

MSK IPAR MIO CONSTRUCT SOL
switch for mip start

MSK IPAR MIO CUT LEVEL ROOT
cut level control at root for mixed integer optimizer

MSK IPAR MIO HEURISTIC LEVEL
heuristic control for mixed integer optimizer

MSK DPAR MIO HEURISTIC TIME
time limit for heuristic search

MSK IPAR MIO KEEP BASIS
switch for basis saving

MSK IPAR MIO MAX NUM BRANCHES
maximum number of branches

MSK IPAR MIO MAX NUM RELAXS
maximum number of relaxations solved

MSK DPAR MIO MAX TIME
time limit for mixed integer optimizer

MSK DPAR MIO MAX TIME APRX OPT
time limit before some relaxation

MSK DPAR MIO NEAR TOL ABS GAP
termination criterion on absolute optimality tolerance

MSK DPAR MIO NEAR TOL REL GAP
termination criterion on relative optimality tolerance

MSK IPAR MIO NODE OPTIMIZER
solver for the sub problems

MSK IPAR MIO NODE SELECTION
node selection strategy

MSK IPAR MIO PRESOLVE AGGREGATE
switch for aggregation during mixed integer presolve
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MSK IPAR MIO PRESOLVE USE
switch for mixed integer presolve

MSK DPAR MIO REL ADD CUT LIMITED
cuts factor

MSK IPAR MIO ROOT OPTIMIZER
solver for the root problem

MSK IPAR MIO STRONG BRANCH
strong branching control

MSK DPAR MIO TOL ABS GAP
absolute optimality tolerance in the mixed integer optimizer

MSK DPAR MIO TOL ABS RELAX INT
absolute integrality tolerance

MSK DPAR MIO TOL REL GAP
relative optimality tolerance in the mixed integer optimizer

MSK DPAR MIO TOL REL RELAX INT
relative integrality tolerance

MSK IPAR MIO PRESOLVE PROBING
switch for probing

MSK IPAR MIO CUT LEVEL TREE
cut level control in tree for mixed integer optimizer

5 Detailed Descriptions of MOSEK Options

MSK IPAR OPTIMIZER (integer)

Controls which optimizer is used to optimize the task.

(default = 0)

0 The choice of optimizer is made automatically.
1 The interior-point optimizer is used.
2 Another cone optimizer.
3 The Qcone optimizer is used.
4 The primal simplex optimizer is used.
5 The dual simplex optimizer is used.
6 Either the primal or the dual simplex optimizer is used.
7 The mixed integer optimizer.
8 The optimizer for nonconvex nonlinear problems.
9 The concurrent optimizer is used.

MSK DPAR OPTIMIZER MAX TIME (real)

Maximum amount of time the optimizer is allowed to spend on the optimization. A negative number means
infinity.

(default = GAMS ResLim)

MSK IPAR PRESOLVE ELIMINATOR USE (integer)

Controls whether free or implied free variables are eliminated from the problem.

(default = 1)

MSK IPAR PRESOLVE ELIM FILL (integer)

Controls the maximum amount of fill-in that can be created during the eliminations phase of the presolve.
This parameter times the number of variables plus the number of constraints denotes the amount of fill in.

(default = 1)
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MSK IPAR PRESOLVE LINDEP USE (integer)

Controls whether the linear constraints is checked for linear dependencies.

(default = 1)

MSK IPAR PRESOLVE LINDEP WORK LIM (integer)

Is used to limit the work that can used to locate the linear dependencies. In general the higher value this
parameter is given the less work can be used. However, a value of 0 means no limit on the amount work
that can be used.

(default = 1)

MSK IPAR PRESOLVE USE (integer)

Controls whether presolve is performed.

(default = 2)

0 The problem is not presolved before it is optimized

1 The problem is presolved before it is optimized.

2 It is decided automatically whether to presolve before the problem is optimized.

MSK IPAR CACHE SIZE L1 (integer)

Controls the size of the L1 cache used by MOSEK.

(default = -1)

MSK IPAR CACHE SIZE L2 (integer)

Controls the size of the L2 cache used by MOSEK.

(default = -1)

MSK IPAR CPU TYPE (integer)

This option specifies the CPU type.

(default = 0)

0 An unknown CPU.

1 An generic CPU type for the platform.

2 An Intel Pentium P3.

3 An Intel Pentium P4 or Intel Xeon.

4 An AMD Athlon.

5 A HP PA RISC version 2.0 CPU.

6 An Intel Itanium2.

7 An AMD Opteron (64 bit).

8 A G5 PowerPC CPU.

9 An Intel PM CPU.

10 An Intel CORE2 cpu.

MSK SPAR PARAM READ FILE NAME (string)

The name of a secondary MOSEK option file that by the MOSEK option reader.

MSK IPAR CONCURRENT NUM OPTIMIZERS (integer)

The maximum number of simultaneous optimizations that will be started by the concurrent optimizer.

(default = 2)
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MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX (integer)

Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

(default = 2)

MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX (integer)

Priority of free simplex optimizer when selecting solvers for concurrent optimization.

(default = 3)

MSK IPAR CONCURRENT PRIORITY INTPNT (integer)

Priority of the interior point algorithm when selecting solvers for concurrent optimization.

(default = 4)

MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX (integer)

Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

(default = 1)

MSK IPAR INFEAS REPORT AUTO (integer)

Controls whether an infeasibility report is automatically produced after the optimization if the problem is
primal or dual infeasible.

(default = 0)

MSK IPAR INFEAS REPORT LEVEL (integer)

Controls the amount info presented in an infeasibility report. Higher values implies more information.

(default = 1)

MSK DPAR DATA TOL AIJ (real)

Absolute zero tolerance for coefficients in the constraint matrix.

Range: [1.0e-16,1.0e-6]

(default = 1.0e-12)

MSK DPAR DATA TOL AIJ LARGE (real)

A coefficient in the constraint matrix which is larger than this value in absolute size causes a warning
message to be printed.

(default = 1.0e10)

MSK DPAR DATA TOL BOUND INF (real)

Any bound which in absolute value is greater than this parameter is considered infinite.

(default = 1.0e16)

MSK DPAR DATA TOL BOUND WRN (real)

If a bound value is larger than this value in absolute size, then a warning message is issued.

(default = 1.0e8)

MSK DPAR DATA TOL CJ LARGE (real)

A coefficient in the objective which is larger than this value in absolute terms causes a warning message to
be printed.

(default = 1.0e8)

MSK DPAR DATA TOL C HUGE (real)

A coefficient in the objective which is larger than the value of this parameter in absolute terms is considered
to be huge and generates an error.

(default = 1.0e16)
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MSK DPAR DATA TOL QIJ (real)

Absolute zero tolerance for coefficients in the Q matrices.

(default = 1.0e-16)

MSK DPAR DATA TOL X (real)

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less
than this value, then the lower and lower bound is considered identical.

(default = 1.0e-8)

MSK IPAR CHECK CONVEXITY (integer)

Specify the level of convexity check on quadratic problems.

(default = 1)

0 No convexity check.

1 Perform simple and fast convexity check.

MSK DPAR LOWER OBJ CUT (real)

If a feasible solution having and objective value outside, the interval LOWER OBJ CUT, UPPER OBJ CUT, then
MOSEK is terminated.

(default = -1.0e30)

MSK DPAR LOWER OBJ CUT FINITE TRH (real)

If the lower objective cut (LOWER OBJ CUT) is less than LOWER OBJ CUT FINITE TRH, then the lower objective
cut LOWER OBJ CUT is treated as infinity.

(default = -0.5e30)

MSK DPAR UPPER OBJ CUT (real)

If a feasible solution having and objective value outside, the interval LOWER OBJ CUT, UPPER OBJ CUT, then
MOSEK is terminated.

(default = 1.0e30)

MSK DPAR UPPER OBJ CUT FINITE TRH (real)

If the upper objective cut (UPPER OBJ CUT) is greater than UPPER OBJ CUT FINITE TRH, then the upper
objective cut UPPER OBJ CUT is treated as infinity.

(default = 0.5e30)

MSK IPAR LOG BI (integer)

Controls the amount of output printed by the basis identification procedure.

(default = 4)

MSK IPAR LOG INTPNT (integer)

Controls the amount of output printed by the interior-point optimizer.

(default = 4)

MSK IPAR LOG MIO (integer)

Controls the print level for the mixed integer optimizer.

(default = 4)

MSK IPAR LOG PRESOLVE (integer)

Controls amount of output printed by the presolve procedure.

(default = 1)
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MSK IPAR LOG SIM (integer)

Controls amount of output printed by the simplex optimizer.

(default = 4)

MSK IPAR LOG BI FREQ (integer)

Controls how frequent the optimizer outputs information about the basis identification is called.

(default = 2500)

MSK IPAR LOG SIM FREQ (integer)

Controls how frequent the simplex optimizer outputs information about the optimization.

(default = 500)

MSK IPAR LOG MIO FREQ (integer)

Controls how frequent the mixed integer optimizer prints the log line. It will print a line every time
MSK INTPAR LOG MIO FREQ relaxations have been solved.

(default = 250)

MSK IPAR WARNING LEVEL (integer)

Warning level. A higher value implies more warnings.

(default = 1)

MSK IPAR MAX NUM WARNINGS (integer)

Sets the maximum number of warnings.

(default = 10)

MSK IPAR INTPNT BASIS (integer)

Controls whether the interior-point optimizer also computes an optimal basis.

(default = 1)

0 Never do basis identification.

1 Basis identification is always performed even if the interior-point optimizer terminates abnormally.

2 Basis identification is performed if the interior-point optimizer terminates without an error.

3 Basis identification is not performed if the interior-point optimizer terminates with a problem status
saying that the problem is primal or dual infeasible.

4 Try another BI method.

MSK DPAR INTPNT CO TOL DFEAS (real)

Dual feasibility tolerance used by the conic interior-point optimizer.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT CO TOL INFEAS (real)

Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A small
number means the optimizer gets more conservative about declaring the model infeasible.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT CO TOL MU RED (real)

Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point optimizer.

Range: [0.0,1.0]

(default = 1.0e-8)
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MSK DPAR INTPNT CO TOL NEAR REL (real)

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the termination
tolerances with value of this parameter. If the solution then satisfies the termination criteria, then the
solution is denoted near optimal, near feasible and so forth.

(default = 100)

MSK DPAR INTPNT CO TOL PFEAS (real)

Primal feasibility tolerance used by the conic interior-point optimizer.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT CO TOL REL GAP (real)

Relative gap termination tolerance used by the conic interior-point optimizer.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK IPAR INTPNT DIFF STEP (integer)

Controls whether different step sizes are allowed in the primal and dual space.

(default = 1)

MSK IPAR INTPNT MAX ITERATIONS (integer)

Sets the maximum number of iterations allowed in the interior-point optimizer.

(default = 400)

MSK DPAR INTPNT NL MERIT BAL (real)

Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Range: [0.0,0.99]

(default = 1.0e-4)

MSK DPAR INTPNT NL TOL DFEAS (real)

Dual feasibility tolerance used when a nonlinear model is solved.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT NL TOL MU RED (real)

Relative complementarity gap tolerance used when a nonlinear model is solved..

Range: [0.0,1.0]

(default = 1.0e-12)

MSK DPAR INTPNT NL TOL NEAR REL (real)

If MOSEK nonlinear interior-point optimizer cannot compute a solution that has the prescribed accuracy,
then it will multiply the termination tolerances with value of this parameter. If the solution then satisfies
the termination criteria, then the solution is denoted near optimal, near feasible and so forth.

(default = 1000.0)

MSK DPAR INTPNT NL TOL PFEAS (real)

Primal feasibility tolerance used when a nonlinear model is solved.

Range: [0.0,1.0]

(default = 1.0e-8)
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MSK DPAR INTPNT NL TOL REL GAP (real)

Relative gap termination tolerance for nonlinear problems.

(default = 1.0e-6)

MSK DPAR INTPNT NL TOL REL STEP (real)

Relative step size to the boundary for general nonlinear optimization problems.

Range: [1.0e-4,0.9999999]

(default = 0.995)

MSK IPAR INTPNT NUM THREADS (integer)

Controls the number of threads employed by the interior-point optimizer.

(default = 1)

MSK IPAR INTPNT OFF COL TRH (integer)

Controls how many offending columns there are located in the Jacobian the constraint matrix. 0 means
no offending columns will be detected. 1 means many offending columns will be detected. In general by
increasing the number fewer offending columns will be detected.

(default = 40)

MSK IPAR INTPNT ORDER METHOD (integer)

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation
system.

(default = 0)

0 The ordering method is automatically chosen.

1 Approximate minimum local-fill-in ordering is used.

2 A variant of the approximate minimum local-fill-in ordering is used.

3 Graph partitioning based ordering.

4 An alternative graph partitioning based ordering.

5 No ordering is used.

MSK IPAR INTPNT REGULARIZATION USE (integer)

Controls whether regularization is allowed.

(default = 1)

MSK IPAR INTPNT SCALING (integer)

Controls how the problem is scaled before the interior-point optimizer is used.

(default = 0)

0 The optimizer choose the scaling heuristic.

1 No scaling is performed.

2 A conservative scaling is performed.

3 A very aggressive scaling is performed.

MSK IPAR INTPNT SOLVE FORM (integer)

Controls whether the primal or the dual problem is solved.

(default = 0)

0 The optimizer is free to solve either the primal or the dual problem.

1 The optimizer should solve the primal problem.

2 The optimizer should solve the dual problem.
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MSK IPAR INTPNT STARTING POINT (integer)

Selection of starting point used by the interior-point optimizer.

(default = 0)

0 The starting point is chosen automatically.

1 The starting point is chosen to be constant. This is more reliable than a non-constant starting point.

MSK DPAR INTPNT TOL DFEAS (real)

Dual feasibility tolerance used for linear and quadratic optimization problems.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT TOL DSAFE (real)

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer
converges slowly and/or the constraint or variable bounds are very large, then it might be worthwhile to
increase this value.

(default = 1.0)

MSK DPAR INTPNT TOL INFEAS (real)

Controls when the optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT TOL MU RED (real)

Relative complementarity gap tolerance

Range: [0.0,1.0]

(default = 1.0e-16)

MSK DPAR INTPNT TOL PATH (real)

Controls how close the interior-point optimizer follows the central path. A large value of this parameter
means the central is followed very closely. On numerical unstable problems it might worthwhile to increase
this parameter.

Range: [0.0,0.9999]

(default = 1.0e-8)

MSK DPAR INTPNT TOL PFEAS (real)

Primal feasibility tolerance used for linear and quadratic optimization problems.

Range: [0.0,1.0]

(default = 1.0e-8)

MSK DPAR INTPNT TOL PSAFE (real)

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer
converges slowly and/or the constraint or variable bounds are very large, then it might be worthwhile to
increase this value.

(default = 1.0)

MSK DPAR INTPNT TOL REL GAP (real)

Relative gap termination tolerance.

(default = 1.0e-8)
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MSK DPAR INTPNT TOL REL STEP (real)

Relative step size to the boundary for linear and quadratic optimization problems.

Range: [1.0e-4,0.999999]

(default = 0.9999)

MSK IPAR INTPNT MAX NUM COR (integer)

Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value
means that Mosek is making the choice.

(default = -1)

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS (integer)

Maximum number of steps to be used by the iterative refinement of the search direction. A negative value
implies that the optimizer chooses the maximum number of iterative refinement steps.

(default = -1)

USE BASIS EST (integer)

(default = 0)

MSK IPAR SIM DUAL CRASH (integer)

Controls whether crashing is performed in the dual simplex optimizer. In general if a basis consists of more
than (100*SIM DUAL CRASH) percent fixed variables, then a crash will be performed.

(default = GAMS BRatio)

MSK IPAR SIM DUAL SELECTION (integer)

Controls the choice of the incoming variable known as the selection strategy in the dual simplex optimizer.

(default = 0)

0 The optimizer choose the pricing strategy.

1 The optimizer uses full pricing.

2 The optimizer uses approximate steepest-edge pricing.

3 The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).

4 The optimizer uses an partial selection approach. The approach is usually beneficial if the number of
variables is much larger than the number of constraints.

5 The optimizer uses a partial selection approach. The approach is usually beneficial if the number of
variables is much larger than the number of constraints.

MSK IPAR SIM HOTSTART (integer)

Controls whether the simplex optimizer will do hotstart if possible.

(default = 1)

0 The simplex optimizer performs a coldstart.

1 The simplex optimize chooses the hot-start type.

2 Only the status keys of the constraints and variables are used to choose the type of hot-start.

MSK IPAR SIM MAX ITERATIONS (integer)

Maximum number of iterations that can used by a simplex optimizer.

(default = GAMS IterLim)

MSK IPAR SIM MAX NUM SETBACKS (integer)

Controls how many setbacks that are allowed within a simplex optimizer. A setback is an event where the
optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical
problems.

(default = 250)
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MSK IPAR SIM PRIMAL CRASH (integer)

Controls whether crashing is performed in the primal simplex optimizer. In general if a basis consists of
more than (100*SIM PRIMAL CRASH) percent fixed variables, then a crash will be performed.

(default = GAMS BRatio)

MSK IPAR SIM PRIMAL SELECTION (integer)

Controls the choice of the incoming variable known as the selection strategy in the primal simplex optimizer.

(default = 0)

0 The optimizer choose the pricing strategy.

1 The optimizer uses full pricing.

2 The optimizer uses approximate steepest-edge pricing.

3 The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).

4 The optimizer uses an partial selection approach. The approach is usually beneficial if the number of
variables is much larger than the number of constraints.

5 The optimizer uses a partial selection approach. The approach is usually beneficial if the number of
variables is much larger than the number of constraints.

MSK IPAR SIM REFACTOR FREQ (integer)

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines when the
best point of refactorization is.

(default = 0)

MSK IPAR SIM SCALING (integer)

Controls how the problem is scaled before a simplex optimizer is used.

(default = 0)

0 The optimizer choose the scaling heuristic.

1 No scaling is performed.

2 A conservative scaling is performed.

3 A very aggressive scaling is performed.

MSK IPAR SIM SOLVE FORM (integer)

Controls whether the primal or the dual problem is solved by the simplex optimizers.

(default = 0)

0 The optimizer is free to solve either the primal or the dual problem.

1 The optimizer should solve the primal problem.

2 The optimizer should solve the dual problem.

MSK IPAR BI CLEAN OPTIMIZER (integer)

Controls which simplex optimizer that is used in the clean up phase.

(default = 0)

0 The choice of optimizer is made automatically.

1 The interior-point optimizer is used.

2 Another cone optimizer.

3 The Qcone optimizer is used.

4 The primal simplex optimizer is used.

5 The dual simplex optimizer is used.
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6 Either the primal or the dual simplex optimizer is used.

7 The mixed integer optimizer.

8 The optimizer for nonconvex nonlinear problems.

9 The concurrent optimizer is used.

MSK DPAR BI LU TOL REL PIV (real)

Relative pivot tolerance used in the LU factorization in the basis identification procedure.

Range: [1.0e-6,0.999999]

(default = 0.01)

MSK IPAR BI MAX ITERATIONS (integer)

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.

(default = 1000000)

MSK IPAR BI IGNORE MAX ITER (integer)

If the parameter MSK IPAR INTPNT BASIS has the value 2 and the interior-point optimizer has termi-
nated due to maximum number of iterations, then basis identification is performed if this parameter has
the value 1.

(default = 0)

MSK IPAR BI IGNORE NUM ERROR (integer)

If the parameter MSK IPAR INTPNT BASIS has the value 2 and the interior-point optimizer has termi-
nated due to a numerical problem, then basis identification is performed if this parameter has the value
1.

(default = 0)

MSK IPAR MIO BRANCH DIR (integer)

Controls whether the mixed integer optimizer is branching up or down by default.

(default = 0)

0 The mixed optimizer decides which branch to choose.

1 The mixed integer optimizer always chooses the up branch.

2 The mixed integer optimizer always chooses the down branch.

MSK IPAR MIO CONSTRUCT SOL (integer)

If set to 1 and all integer variables has been given a value for which a feasible MIP solution exists, then
MOSEK generates an initial solution to the MIP by fixing all integer values and solving for the continues
variables.

(default = 0)

MSK IPAR MIO CUT LEVEL ROOT (integer)

Controls the cut level employed by the mixed integer optimizer. A negative value means a default value
determined by the mixed integer optimizer is used. By adding the appropriate values from the following
table the employed cut types can be controlled.

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
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Coefficient reduction +512
GCD +1024
Obj. integrality +2048

(default = -1)

MSK IPAR MIO HEURISTIC LEVEL (integer)

Controls the heuristic employed by the mixed integer optimizer to locate an integer feasible solution. A
value of zero means no heuristic is used. A large value than 0 means a gradually more sophisticated heuristic
is used which is computationally more expensive. A negative value implies that the optimizer chooses the
heuristic to be used.

(default = -1)

MSK DPAR MIO HEURISTIC TIME (real)

Maximum time allowed to be used in the heuristic search for an optimal integer solution. A negative values
implies that the optimizer decides the amount of time to be spend in the heuristic.

(default = -1.0)

MSK IPAR MIO KEEP BASIS (integer)

Controls whether the integer presolve keeps bases in memory. This speeds on the solution process at cost
of bigger memory consumption.

(default = 1)

MSK IPAR MIO MAX NUM BRANCHES (integer)

Maximum number branches allowed during the branch and bound search. A negative value means infinite.

(default = -1)

MSK IPAR MIO MAX NUM RELAXS (integer)

Maximum number relaxations allowed during the branch and bound search. A negative value means infinite.

(default = -1)

MSK DPAR MIO MAX TIME (real)

This parameter limits the maximum time spend by the mixed integer optimizer. A negative number means
infinity.

(default = -1.0)

MSK DPAR MIO MAX TIME APRX OPT (real)

Number of seconds spend by the mixed integer optimizer before the MIO TOL REL RELAX INT is applied.

(default = 60)

MSK DPAR MIO NEAR TOL ABS GAP (real)

Relaxed absolute optimality tolerance employed by the mixed integer optimizer. The mixed integer optimizer
is terminated when this tolerance is satisfied.

(default = GAMS OptCa)

MSK DPAR MIO NEAR TOL REL GAP (real)

Relaxed relative optimality tolerance employed by the mixed integer optimizer. The mixed integer optimizer
is terminated when this tolerance is satisfied.

(default = GAMS OptCr)

MSK IPAR MIO NODE OPTIMIZER (integer)

Controls which optimizer is employed at non root nodes in the mixed integer optimizer.

(default = 0)
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0 The choice of optimizer is made automatically.

1 The interior-point optimizer is used.

2 Another cone optimizer.

3 The Qcone optimizer is used.

4 The primal simplex optimizer is used.

5 The dual simplex optimizer is used.

6 Either the primal or the dual simplex optimizer is used.

7 The mixed integer optimizer.

8 The optimizer for nonconvex nonlinear problems.

9 The concurrent optimizer is used.

MSK IPAR MIO NODE SELECTION (integer)

Controls the node selection strategy employed by the mixed integer optimizer.

(default = 0)

0 The optimizer decides the node selection strategy.

1 The optimizer employs a depth first node selection strategy.

2 The optimizer employs a best bound node selection strategy.

3 The optimizer employs a worst bound node selection strategy.

4 The optimizer employs a hybrid strategy.

5 The optimizer employs selects the node based on a pseudo cost estimate.

MSK IPAR MIO PRESOLVE AGGREGATE (integer)

Controls whether the presolve used by the mixed integer optimizer tries to aggregate the constraints.

(default = 1)

MSK IPAR MIO PRESOLVE USE (integer)

Controls whether presolve is performed by the mixed integer optimizer.

(default = 1)

MSK DPAR MIO REL ADD CUT LIMITED (real)

Controls how many cuts the mixed integer optimizer is allowed to add to the problem. The mixed integer
optimizer is allowed to MIO REL ADD CUT LIMITED*m w cuts, where m is the number constraints in the
problem.

Range: [0.0,2.0]

(default = 0.75)

MSK IPAR MIO ROOT OPTIMIZER (integer)

Controls which optimizer is employed at the root node in the mixed integer optimizer.

(default = 0)

0 The choice of optimizer is made automatically.

1 The interior-point optimizer is used.

2 Another cone optimizer.

3 The Qcone optimizer is used.

4 The primal simplex optimizer is used.

5 The dual simplex optimizer is used.

6 Either the primal or the dual simplex optimizer is used.

7 The mixed integer optimizer.
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8 The optimizer for nonconvex nonlinear problems.

9 The concurrent optimizer is used.

MSK IPAR MIO STRONG BRANCH (integer)

The value specifies the depth from the root in which strong branching is used. A negative value means the
optimizer chooses a default value automatically.

(default = -1)

MSK DPAR MIO TOL ABS GAP (real)

Absolute optimality tolerance employed by the mixed integer optimizer.

(default = 0.0)

MSK DPAR MIO TOL ABS RELAX INT (real)

Absolute relaxation tolerance of the integer constraints, i.e. if the fractional part of a discrete variable is
less than the tolerance, the integer restrictions assumed to be satisfied.

(default = 1.0e-5)

MSK DPAR MIO TOL REL GAP (real)

Relative optimality tolerance employed by the mixed integer optimizer.

(default = 1.0e-8)

MSK DPAR MIO TOL REL RELAX INT (real)

Relative relaxation tolerance of the integer constraints, i.e. if the fractional part of a discrete variable is less
than the tolerance times the level of that variable, the integer restrictions assumed to be satisfied.

(default = 1.0e-6)

MSK IPAR MIO PRESOLVE PROBING (integer)

Controls whether the mixed integer presolve performs probing. Probing can be very time consuming.

(default = 1)

MSK IPAR MIO CUT LEVEL TREE (integer)

Controls the cut level employed by the mixed integer optimizer at the tree. See MSK IPAR MIO CUT LEVEL ROOT.

(default = -1)

6 The MOSEK Log File

The MOSEK log output gives much useful information about the current solver progress and individual phases.

6.1 Log Using the Interior Point Optimizer

The following is a MOSEK log output from running the transportation model trnsport.gms from the GAMS
Model Library:

Interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Presolve - time : 0.00
Presolve - Stk. size (kb) : 0
Eliminator - tries : 0 time : 0.00
Eliminator - elim’s : 0
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Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated.
Matrix reordering started.
Local matrix reordering started.
Local matrix reordering terminated.
Matrix reordering terminated.
Optimizer - threads : 1
Optimizer - solved problem : the primal
Optimizer - constraints : 5 variables : 11
Factor - setup time : 0.00 order time : 0.00
Factor - GP order used : no GP order time : 0.00
Factor - nonzeros before factor : 11 after factor : 13
Factor - offending columns : 0 flops : 2.60e+01

The first part gives information about the presolve (if used). The main log follows:

ITE PFEAS DFEAS KAP/TAU POBJ DOBJ MU TIME
0 6.0e+02 1.0e+00 1.0e+00 1.053000000e+00 0.000000000e+00 1.2e+01 0.00
1 5.9e+02 1.1e+00 1.0e+00 3.063646498e+00 5.682895191e+00 3.0e+01 0.00
2 4.6e+01 8.6e-02 9.8e+00 3.641071165e+01 4.750801284e+01 2.3e+00 0.00
3 8.7e-01 1.6e-03 1.7e+01 1.545771936e+02 1.719072826e+02 4.4e-02 0.00
4 8.1e-02 1.5e-04 8.8e-01 1.543678291e+02 1.552521470e+02 4.1e-03 0.00
5 1.3e-02 2.4e-05 1.3e-01 1.537617961e+02 1.538941635e+02 6.4e-04 0.00
6 1.3e-03 2.4e-06 1.1e-02 1.536766256e+02 1.536876562e+02 6.6e-05 0.00
7 1.6e-07 3.1e-10 1.2e-06 1.536750013e+02 1.536750025e+02 8.4e-09 0.00
Basis identification started.
Primal basis identification phase started.
ITER TIME
1 0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER TIME
0 0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. CPU Time: 0.00. Real Time: 0.00.

Interior-point solution
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal - objective: 1.5367500132e+02 eq. infeas.: 5.61e-06 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00
Dual - objective: 1.5367500249e+02 eq. infeas.: 1.06e-08 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Basic solution
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal - objective: 1.5367500000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
Dual - objective: 1.5367500000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00

Optimizer - real time : 0.00 cpu time: 0.00
Interior-point - iterations : 7 cpu time: 0.00
Basis identification - cpu time: 0.00
Primal - iterations : 1 cpu time: 0.00
Dual - iterations : 0 cpu time: 0.00
Clean - iterations : 0 cpu time: 0.00
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Simplex - cpu time: 0.00
Primal simplex - iterations : 0 cpu time: 0.00
Dual simplex - iterations : 0 cpu time: 0.00

Mixed integer - relaxations: 0 cpu time: 0.00

The last section gives details about the model and solver status, primal and dual feasibilities, as well as solver
resource times. Furthermore, the log gives information about the basis identification phase. Some of this infor-
mation is listed in the GAMS solve summary in the model listing (.LST) file as well.

The fields in the main MOSEK log output are:

Field Description
ITE The number of the current iteration.
PFEAS Primal feasibility.
DFEAS Dual feasibility.
KAP/TAU This measure should converge to zero if the problem has a primal/dual optimal solution.

Whereas it should converge to infinity when the problem is (strictly) primal or dual infea-
sible. In the case the measure is converging towards a positive but bounded constant then
the problem is usually ill-posed.

POBJ Current objective function value of primal problem.
DOBJ Current objective function value of dual problem.
MU Relative complementary gap.
TIME Current elapsed resource time in seconds.

6.2 Log Using the Simplex Optimizer

Below is a log output running the model trnsport.gms from the GAMS model library using the MOSEK simplex
optimizer.

Reading parameter(s) from "mosek.opt"
>> MSK_IPAR_OPTIMIZER 6
Simplex optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Presolve - time : 0.00
Presolve - Stk. size (kb) : 0
Eliminator - tries : 0 time : 0.00
Eliminator - elim’s : 0
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated.
Dual simplex optimizer started.
Dual simplex optimizer setup started.
Dual simplex optimizer setup terminated.
Optimizer - solved problem : the primal
Optimizer - constraints : 5 variables : 6
Optimizer - hotstart : no

ITER DEGITER% FEAS DOBJ TIME(s)
0 0.00 0.0000000000e+00 0.0000000000e+00 0.00
3 0.00 0.0000000000e+00 1.5367500000e+02 0.00
Dual simplex optimizer terminated.
Simplex optimizer terminated.
Basic solution
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
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Primal - objective: 1.5367500000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
Dual - objective: 1.5367500000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00

The fields in the main MOSEK log output are:

Field Description
ITER Current number of iterations.
DEGITER% Current percentage of degenerate iterations.
FEAS Current (primal or dual) infeasibility.
D/POBJ Current dual or primal objective
TIME Current elapsed resource time in seconds.

6.3 Log Using the Mixed Integer Optimizer

Below is a log output running the model cube.gms from the GAMS model library using the MOSEK mixed-integer
optimizer.

Mixed integer optimizer started.
BRANCHES RELAXS ACT_NDS BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 1.6000000000e+01 0.0000000000e+00 100.00 0.1
0 1 0 4.0000000000e+00 0.0000000000e+00 100.00 0.1
128 250 5 4.0000000000e+00 0.0000000000e+00 100.00 0.3
167 502 6 4.0000000000e+00 0.0000000000e+00 100.00 0.7
241 758 65 4.0000000000e+00 0.0000000000e+00 100.00 0.9
200 809 83 4.0000000000e+00 1.3333333333e-01 96.67 0.9
A near optimal solution satisfying the absolute gap tolerance of 3.90e+00 has been located.

Objective of best integer solution : 4.00000000e+00
Number of branches : 267
Number of relaxations solved : 810
Number of interior point iterations: 0
Number of simplex iterations : 10521
Mixed integer optimizer terminated. Time: 0.95

The fields in the main MOSEK log output are:

Field Description
BRANCHES Current number of branches in tree.
RELAXS Current number of nodes in branch and bound tree.
ACT NDS Current number of active nodes.
BEST INT OBJ. Current best integer solution
BEST RELAX OBJ Current best relaxed solution.
REL GAP(%) Relative gap between current BEST INT OBJ. and BEST RELAX OBJ.
TIME Current elapsed resource time in seconds.

The log then gives information about solving the model with discrete variables fixed in order to determine
marginals. We also get information about crossover to determine a basic solution, and finally MOSEK provides
information about using the Simplex Method to determine an optimal basic solution.

Interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
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Presolve - time : 0.00
Presolve - Stk. size (kb) : 12
Eliminator - tries : 0 time : 0.00
Eliminator - elim’s : 0
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated.
Interior-point optimizer terminated. CPU Time: 0.00. Real Time: 0.00.

Interior-point solution
Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal - objective: 4.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00
Dual - objective: -8.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Basic solution
Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal - objective: 4.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
Dual - objective: -8.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00

Optimizer - real time : 1.35 cpu time: 0.95
Interior-point - iterations : 0 cpu time: 0.00
Basis identification - cpu time: 0.00
Primal - iterations : 0 cpu time: 0.00
Dual - iterations : 0 cpu time: 0.00
Clean - iterations : 0 cpu time: 0.00

Simplex - cpu time: 0.00
Primal simplex - iterations : 0 cpu time: 0.00
Dual simplex - iterations : 0 cpu time: 0.00

Mixed integer - relaxations: 810 cpu time: 0.95
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