
Mathematical Programming 80 (1998) 35-61

Partitioning mathematical programs
for parallel solution 1

Michael C. Ferris *, Jeffrey D. H o r n 2
Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA

Received 31 May 1994; revised manuscript received 18 December 1995

Abstract

This paper describes heuristics for partitioning a general M x N matrix into arrowhead form.
Such heuristics are useful for decomposing large, constrained, optimization problems into forms
that are amenable to parallel processing. The heuristics presented can be easily implemented using
publicly available graph partitioning algorithms. The application of such techniques for solving
large linear programs is described. Extensive computational results on the effectiveness of our
partitioning procedures and their usefulness for parallel optimization are presented. @ 1998 The
Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

Keywords: Graph partitioning; Linear programming; Bundle method; Parallel optimization

1. Introduction

This paper describes several heuristics for parti t ioning a general M x N matrix into

arrowhead form. Such parti t ioning is useful in many areas of numerical analysis where

several part i t ioning heuristics exist for the special case of N x N symmetric matrices

[4,9]. We make use of several recent innovations in graph parti t ioning heuristics to

decompose large, constrained optimization problems into forms amenable to parallel

processing. This is done by parti t ioning the large sets of constraints arising in optimiza-

tion problems into a manageable number of independent blocks of constraints, l inked

together by relatively few linking variables and coupling constraints.

* Corresponding author. Email: ferris@cs.wisc.edu.
1This material is based on research supported by National Science Foundation Grants CCR-9157632 and

CDA-9024618, the Air Force Office of Scientific Research Grant F49620-94-1-0036 and the AT&T Foundation.
2 Email: hom@cs.wisc.edu.

0025-5610/98/$19.00 @ 1998 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.
PI1 S0025-56 10(97)00009-9

36 M.C. Ferris, .I.D. Horn~Mathematical Programming 80 (1998)35-61

First, the arrowhead form is described and basic results on the correspondence between
an M x N matrix and its associated graph are presented. This correspondence is then
used to present heuristics for partitioning a matrix by partitioning the associated graph.
The results of the heuristics can be improved to some extent by adding dummy nodes
to the associated graph. These dummy nodes enable the resulting blocks to have uneven
sizes, and even some of the blocks to be empty. By adding enough dummy nodes to
the graph, we are able to accommodate problems that naturally split into fewer than the
requested number of blocks.

In Section 3, we present some computational results to demonstrate the effectiveness of
our heuristics. We give two sets of results to show how well our partitioning algorithms
perform as part i t ioning algorithms, that is, how close do they come to producing a matrix
in arrowhead form with the desired number of blocks. In the first set of results, we show

the effect of changing the number of dummy nodes in the problem for the complete set
of problems in the NETLIB test suite. We detail the percentages of coupling constraints
and linking variables, and the ratio of the largest block size to the average, in addition

to an overall measure that indicates how well our heuristic performs. This analysis is
used to fix the percentage of dummy nodes for the remainder of our computation. In
the second set of results we show how well our heuristics performs by taking a problem
that is naturally in arrowhead form and randomly permuting its rows and columns.
Our heuristics effectively reconstruct an arrowhead form. These results are useful in
determining what classes of problems are amenable to this kind of partitioning, what

are the relative costs of treating the linking variables and constraints, and how balanced
the computational load will be for the parallel processors.

The remainder of the paper shows one way to use the partitioning algorithm for the
solution of linear programs. The linking variables are removed and replaced with cou-
pling constraints to which a dual method is applied. The dual problem is a non-smooth
optimization problem which is solved by an application of the bundle-level method. Us-
ing this approach, we illustrate the utility of partitioning matrices by decomposing the
constraint sets of several NETLIB linear programs into a reasonable number of indepen-
dent constraint blocks and a relatively small number of linking variables and coupling
constraints. The resulting problem may be solved in parallel on as many processors as
there are independent constraint blocks. The computational results given in Section 4.2

measure the utility of our partitioning algorithms for the efficient solution of large-scale,
linear programs.

The analysis of this paper does not rely on the linearity of the constraints. Nonlinear
programs can use the same technique to exploit underlying structure in the constraint set
and enable the efficient solution of such problems using decomposition techniques such
as those found in [5,6,29]. Furthermore, although many modern modeling languages and
systems allow block structure to be specified during problem formulation, the techniques
we outline here can be used to modify such a partition to take full advantage of the
number and relative performance of the available parallel processing units.

M,C. Ferris, J.D. Horn~Mathematical Programming 80 (1998)35-61

2. Matrix partitioning algorithms

37

Definition 1. A matrix is said to be in arrowhead form if it has the following structure: C;/ B2 C2

B~;
R1 R2 . . . RK

Here Bi ~ R mixm, Ci E ~mi×p, Ri C R qxn~ and D E R qxp. We call each Bi a block and

note that in the matrix above there are K such blocks. We let M :-- }--~l mi + q and

N := ~f= l nj + p be the row and column dimensions of the matrix respectively.

Definition 2. We call each row of the q x N submatrix

(R1 R2 . . . R~; D)

a coupling constraint.

In general, these rows link together or restrict the column spaces of blocks, resulting

in the column space for the entire matrix. Such a row may restrict the column space of

one block Bi based on the column space of another block Bj. In this event, the blocks

Bi and B.i are said to be linked or coupled by such a row. The reader should note that

coupling constraints appear as rows in the arrowhead form of the matrix.

Definition 3. We call each column of the submatrix

(c;) C2

a linking column.

In general, these columns link together or restrict the row spaces of blocks, resulting

in the row space for the entire matrix. Such a column may restrict the row space of one

block Bi based on the row space of another block B.i. In this event, the blocks Bi and

Bj are also said to be linked by such a column.

We note that p and q may take the value 0, in which case either the linking columns
or the coupling constraints will be missing. I f p = 0, q va 0 or p 4~ 0, q = 0, the

resulting matrix is called a singly-bordered, block-diagonal matrix. If both p and q are

equal to 0, then we will simply call the matrix block-diagonal.

38 M.C Ferris, J.D. Horn~Mathematical Programming 80 (1998)35-61

We will later give a procedure whereby all of the linking columns can be removed by
adding some columns to various blocks and extra coupling constraints, thus transforming
an arrowhead form into a singly-bordered block-diagonal form.

An important concept in what follows is that of the associated graph of a matrix [10].

Definition 4. Given a matrix AM×N, the associated graph of A, denoted by G (A) is
the pair (V,E) satisfying:

(1) V = R U C , R = {r l , r2 rM}, C = {cl ,c2 CN}.

(2) (r i ,¢ j) E E if ri E R, cj E C, and ai,j ~ O.

Note that the G (A) is a bipartite graph, with (R, C) being a bipartition. That is, there

are no edges joining elements of R to R, or C to C. The set R is the set of row vertices

of G (A) and C is the set of column vertices of G (A) .

For example, given the following 5 × 7 matrix,

x x

A = x x x ,
x

x x x

where x denotes a non-zero entry, we have G (A) given in Fig. 1.
The following definition is key to the algorithm that we use to create the matrix in

arrowhead form. It relates to a general graph; in our work, we use it for the associated

graph of a matrix.

Definition 5. Given a graph G = (V,E), and an integer K, a partition of G is a partition
of the set V of vertices of G into K subsets. The cost of such a partition is the number
of edges in E that connect vertices in different subsets of the partition of V.

The general technique we use to partition the graph is a multilevel procedure. At
each level, clusters of nodes with high connectivity are merged to form a supernode,
reducing in the size of the graph. Levels are iteratively formed until the condensed graph

is suitably small.
A spectral method is applied to the condensed graph to give a initial partition. Such

methods are known to be effective at finding high quality partitions and are outlined in
Section 2.1. The levels are then iteratively unravelled by bursting apart the supernodes.
Each resulting partition is refined using the Kernighan-Lin heuristic that is outlined in
Section 2.2.

We first describe both techniques for partitioning a graph with 2n vertices into two
equally sized subsets. Heuristics for solving this problem are the building blocks for
heuristics that solve more general graph partitioning problems. For the graph G = (V,E),
suppose that V contains 2n vertices. We wish to partition V into two sets A and B, each

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61 39

Fig. 1. The associated bipartite graph G(A).

containing n vertices, such that the number of edges joining vertices in A to vertices

in B is minimized.

2.1. Spectral partitioning methods

Spectral partitioning heuristics generally give very high quality graph partitions. Let
x b e a n dimensional vector such that xi = zkl and ~icv xi = 0 . Consider the function

f (x) =1 Z (x i - xj) 2.
(i,j)CE

If xi = 1 when xi C A and xi = - 1 when xi E B then notice that f (x) counts the
number of edges crossing between the sets A and B. This is because (xi - xj) 2 is zero
if xi and xj have the same sign and is equal to four if xi and xj differ in sign.

The adjacency matrix for the graph G is defined by

A i , j = { ; i f (i , j) CE,
otherwise.

The degree matrix for the graph G is a diagonal matrix D = diag(di) where di is the
number of edges incident on vertex i. We can write f (x) in terms of the adjacency
matrix and degree matrix for the graph G as follows. We note that

(X i - - X j) 2 = Z (X2-I-X2) -- Z 2XiXj.
(i,j) CE (i,j) CE (i,j) CE

40 M.C. Ferris, ,I.D. Horn~Mathematical Programming 80 (1998) 35-61

We can rewrite each of terms on the right-hand side as follows:

(i,j) GE (i,j) 6E iGV

and

(i,j)CE iEV jCV iCV jCV

Thus, we may define a Laplacian matrix, L = D - A and conclude that f (x) = l x T L x .

The graph partitioning problem can then be formulated as the following discrete mini-

mization problem:

min I xT Lx

n

subject to Z x i = 0 ' x i = ± l .
i=1

The crucial step in spectral methods is the relaxation of the discrete constraint xi = • 1

in the following continuous minimization problem:

min l x T L x

n

subject to ~ x i = 0 , x T x = n .

i=1

A solution x of this problem is projected onto the feasible region of the discrete problem

to obtain an approximate solution of that problem.

Let A1, A2 An be an orthonormal basis of eigenvectors of L with the correspond-

ing eigenvalues .,11 <~ A2 <~ . . . <~ An. We can therefore write x = ~ i °liAi and so

~ i a ~ = n. It is possible to show that AI = (1/x/~)e and ,~l = 0. By substituting for x

we may write

//

- -

/ - -2

because /l~ = 0. Given the ordering of the eigenvalues, this gives

1 nA2

+ . . . + -])a2/> 4

Note also that x* = V~A2 achieves this lower bound. Furthermore, the balance constraint
n

that ~-~i--1 xi = 0 is satisfied, since

eTx * = (v/nA1)T(x/~A2) = ATAz = 0.

Since x* satisfies the constraints of the continuous problem and minimizes f (x) , x* is

a solution to the continuous problem.

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61 41

Spectral methods calculate the vector A2 associated with the second smallest eigen-
value of the Laplacian matrix L = D - A. This eigenvector is called the Fiedler vector
and is used to generate the following partition, based on the ideas outlined above. The
vertices corresponding the the largest n/2 entries in the Fiedler vector are assigned to
set A. The vertices corresponding to the smallest n/2 entries in the Fiedler vector are
assigned to B. The Fiedler vector is typically computed using the Lanczos algorithm.

When k = 2 i, one may use spectral bisection to partition graphs into k subsets, by
recursively bisecting the sets until reaching the desired number of sets. Spectral bisection
has also been generalized to more general partitioning problems [16,13] using more
information from the eigenvector decompostion.

2.2. Kernighan-Lin heuristic

Kernighan and Lin give an effective heuristic for partitioning graphs so as to minimize
the cost of the resulting partition [17]. Their heuristic is particularly effective when used
to refine an already good partition but tends to break down when applied to a poorly
partitioned graph.

A starting partition A, B of V is generated by a spectral partitioning method. Attempts
are made to decrease the number of edges joining A to B by interchanging subsets of A

and B. For each a E A, define the external cost Ea as the number of edges in G joining
a to vertices in B. Define an internal cost la as the number of edges joining a to other
vertices in A. For each b E B define Eb and Ib similarly. For every v C V define Dv as

the difference between external and internal costs, that is Dv = Ev - Iv. It can be shown
that the gain from interchanging a vertex a C A with a vertex b E B is Da q- Db if there
is no edge joining a and b and De, ÷ Db -- 2 if there is an edge joining a and b.

First, D,, is calculated for all v C V. We define

{20 i f (a , b) EE ,
g,(a, b) = otherwise.

Second, we choose a E A, b E B such that

gl = Da + Db - g,(a, b)

is maximized. We set this a and b aside for the time being and call them al and bl
respectively. Next, the Dv are recalculated using the following formulae:

Dx+---Dx + O (x , al) -~l ,(x, bl) , x c a \ {al},

Dy+- -Dy+O(y , b l) - O (y , al) , y E B \ { b l } .

Here, we are recalculating the differences Dv as if al and bl have been removed from
the graph. Next, we repeat the process by choosing a2 C A \ {al} and b2 C B \ {bl} to
maximize

g2 = Da2 + Db2 -- ~//(a2, b2).

42 M.C. Ferris, J.D. Horn/Mathematical Programming 80 (1998)35-61

The quantity g2 is the additional gain that can be made by exchanging vertices a2 and b2
in addition to aj and bl. We continue this procedure until all of the vertices in the sets A
and B have been exhausted. Each time a pair of vertices ak and bk is identified, that pair

is removed from consideration in future rounds. The size of the sets being considered
decreases by one after each round, so that the procedure is performed a total of n rounds.

k Finally, we choose k to maximize the sum S = ~-~i=1 gi. If S > 0 we can reduce the

value of S by interchanging al, a2 ak with bl, b2 bk. Once, this is done, we

can treat the resulting partition as the initial partition and start the heuristic again from

the beginning. If S = 0 then the current partition is a locally optimum partition.

If at each round, the difference values Dx for x C A and Dy for y E B are kept in

sorted order, then only a few contenders for pairs that maximize gk need to be evaluated.
When this is done, the heuristic runs in time proportional to n 2 log n. Note that this is

much more reasonable than enumerating all of the partitions of G.

Once the basic two-way partitioning heuristic is well understood, we can easily extend
it to partitioning a set of n = km vertices in k vertex sets in such a way that the number

of edges between distinct vertex sets is minimized. We start with an arbitrary partition

of the vertices into k equally sized subsets. The two-way partitioning heuristic is then

applied to pairs of subsets until all subsets are pairwise optimal. There are (~) pairs

of subsets that must be considered. Note that more than one pass through the pairs of

subsets may be necessary since, when two subsets are made optimal with respect to

each other by means of interchanging vertices, this may change their optimality with

respect to other subsets.

2.3. Unequally sized partitions

Suppose that we wish to partition a set of vertices into k subsets, but that we do not

care whether or not each of the subsets has exactly the same number of vertices. We

can then add enough dummy vertices to the problem, so that there will be a total of km t

vertices in the problem. These dummy vertices have no edges incident on them. When

the resulting problem is solved and the dummy vertices are removed from the subsets

in the resulting partition, the resulting partition will consist of k subsets each containing

between 0 and m I of the original n vertices.
Notice, that if one of the k subsets is empty, then we have essentially partitioned the

n vertices into k - 1 subsets. This indicates that we can also introduce slack into the

number of subsets in the partitions. To generate a partition of between j and k subsets

each containing possibly unequal numbers of vertices, simply introduce enough dummy
vertices so that there is a total of k In/j l vertices in the resulting problem. We remove

the dummy vertices from each of the subsets in the resulting locally optimal solution

and then discard any subsets in the partition that are empty.

2.4. Matrix partitioning

We now discuss how the graph partitioning heuristics outlined above can be used to

partition a matrix into arrowhead form. First, the graph of the matrix is formed and

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998)35-61 43

enough dummy vertices are added to reflect the amount of slack we desire in both

the number of blocks and the uniformity of size for the blocks. The spectral method
is applied to the resulting graph• Then the resulting graph is locally refined using the
Kernighan-Lin heuristic•

We are then left with a partition of vertices• We examine the edges that join vertices
in distinct subsets of the partition• For each vertex v we count the number of edges
connecting the vertex to vertices outside of the subset in the partition containing v.
Call this number Ev, the external cost of the vertex v. We apply a greedy algorithm
that looks for the largest Ev and removes that vertex from the graph. The Ev are then
recalculated for the resulting graph• Actually, this recalculation is easy, since we only
need decrement Ew for all vertices w coincident on an edge with the vertex v. We
continue this procedure until all Ev in the remaining graph are zero. In a tie breaking
procedure we favor removing rows to columns•

It is possible to improve the partitions that this heuristic generates, but the added
cost appears significant. Each time a vertex is removed the Kernighan-Lin heuristic
can be re-applied to the remaining graph• Although some improvement was noted for
many of the NETLIB problems, this procedure typically increased the running time by
a factor of 10. For applications that are frequently repeated, the partition improvement
may warrant this extra computation• However, in our applications to parallel solution of
linear programs, it was not worthwhile•

The column vertices removed during this procedure correspond to columns in the
right-hand border in our matrix partition. The row vertices removed during this procedure
correspond to rows in the lower border in our matrix partition. The subsets in the
original graph partition are now completely disconnected from each other, for all edges
connecting one subset to another have been removed• Each of these subsets forms a
block in the matrix partition. This completes the transformation to arrowhead form.

It is relatively easy to transform a matrix in arrowhead form into a singly-bordered
block-diagonal form. To accomplish this, we consider the variables corresponding to the
linking columns

C2

For each column j of this matrix, we introduce multiple copies of the corresponding

variable, one copy for each block Ci (or D) that has at least one nonzero in column j.
These multiple copies are used to decouple the corresponding Ci's. We then add coupling

constraints that force these variables all to be equal• This technique is the same as one
used in stochastic programming to treat non-anticipativity (see [23]). Other techniques
are described in [20]. For example,

44 M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

iixx xxx xx
X

X

X

gets transformed into

/X X

X X

X X

X X

X X

1 - 1

or with a single column permutation that makes the 5th column the 3rd column

/X X X

X X X

X X X

X X

X X

1 - 1

Note that at most p x K constraints are added if C is completely dense, many fewer if

C is sparse.

3. Partitioning results

In this section, we present some computational results to demonstrate the effectiveness

of the heuristics outlined above. We coded the heuristics ourselves and also tested two

publicly available graph partitioning routines, Chaco [12] and Metis [15]. Almost

without exception, Metis performed the best in terms of run time and partition quality.

For this reason we use Metis for all the results listed in this paper. We give three
sets of results to show how well our partitioning heuristics perform as par t i t ioning

algori thms. That is, how close do they come to producing a matrix in arrowhead form

with the desired number of blocks. We have run the above matrix partitioning procedure

on all the sample linear programs that are publicly available via anonymous ftp from

netlib.att.com (see [7]). We have attempted to partition each problem into 2, 4, 8, 16,

32, 64, 128, and 256 blocks.

Let mi denote the number of rows and ni the number of columns in the ith block. Let

M and N denote the number of rows and columns in the original matrix. Throughout

this section we use the following measure to determine the effectiveness of our partition

into K blocks,

]l.p,q := po~ + qfl ,

M.C. Ferris, J.D. Hot,~Mathematical Programming 80 (1998) 35-61 45

w h e r e p + q = 1 and

m* := max mi, n* := m a x nj,

1 K K ~'~:= mi nj ~iKl mi 1 nj

a : = ~ - 7 / ~ l ~ - ~ n - 2 - , /3:= M N
"= j=l

We note that ce is equal to one if each of the blocks has an equal number of rows

and an equal number of columns and diminishes to zero as the numbers of rows and
columns become increasingly variable. The value of/3 simply measures the fraction of
the partition that is not part of the lower or right-hand border. That means that 1 - / 3
measures the fraction of the partition that is made up of blocks. Thus, if we manage to
split the matrix into K blocks of equal area, then/,p,q = 1. If the blocks are of unequal
area, then /z decreases. We may control the extent to which coupling constraints and
linking variables are penalized by adjusting the parameters p and q. Values of q near one

(p near zero) will penalize linking constraints heavily, while values of q near zero (p
near one) will penalize unevenly sized blocks. The values p = 0. l, q = 0.9 were chosen
to try to reflect how the partitioning would enable parallel solution of the underlying
linear program. Unequal sized blocks probably lead to load balancing problems, while
linking constraints are usually treated by some synchronization procedure, leading to
loss of parallel efficiency. In both of these cases, the resulting tZp,q becomes closer to 0.
Our experience indicates that loss of parallel efficiency is a much more critical problem
than load balancing, so we penalized the number of linking constraints rather severely.

In the first set of computational results, we show the effect of changing the number

of dummy nodes in the problem and use this analysis to fix this parameter for the
remainder of our computation. We fix the number of requested blocks at 8 and vary the
number of dummy nodes to be 0, 20, and 40 percent of the number of nodes in the

original problem. The results are given in Table 1. On a large subset of the problems,
the resulting values o f / z are greater than 0.6. Figs. 2-5 show the original matrix, the

resulting permuted matrices and corresponding values of/~ for a particular problem. We
believe this shows that our heuristic performs very well.

In most of the problems that are amenable to partitioning, adding 20% dummy nodes

improves the partition. However, adding 40% dummy nodes sometimes degrades the
resulting partition. The reason for this is that adding too many dummy nodes tends
to make eigenvalues clump together in spectral methods and causes the quality of
the resulting partitions to degrade. We stress that using spectral methods followed by
refinement via Kernighan-Lin is important when dummy nodes are present. We initially

tried a Kernighan-Lin heuristic alone that generally resulted in partitions that were poorer
at the 20% level and even worse at the 40% level. Too many dummy nodes encourages
Kernighan-Lin methods to fall into non-global optima much more frequently.

There are cases however, where increasing the number of dummy nodes does seem

to be beneficial. A good example of this is the problem named "sharelb". We present
some graphical representations of this problem in Figs. 2-5 as the number of dummy

46 M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

Table 1
8 block partitions with varying percentages of dummy nodes

Problem Dnsty % 0% dummy nodes

a /3 /z

20% dummy nodes

a /3 #

40% dummy nodes

a /3 #

25fv47 0.9 0.61 0.64 0.64

80bau3b 0.1 0.46 0.57 0.56

adlittle 8.4 0.52 0.47 0.47

afiro 9.8 0.41 0.47 0.46

agg 3.2 0.44 0,65 0,63

agg2 2.9 0.42 0.69 0.66

agg3 2.9 0.42 0.70 0.67

bandm 1.8 0.81 0.65 0.67

beaconfd 7.6 0.31 0,42 0.41

blend 8.4 0.55 0.56 0,56

bnll 0.8 0.64 0.69 0.69

bnl2 0.2 0.64 0.78 0.76

boeingl 2.9 0.48 0.57 0.56

boeing2 6.6 0.31 0.37 0.37

bore3d 2.1 0.56 0.62 0.62

brandy 4.7 0.45 0.50 0.50

capri 1.9 0.49 0.58 0.57

cycle 0.4 0.66 0.75 0.74

czprob 0.4 0.24 0,49 0.46

d2q06c 0.3 0.68 0.72 0.72

d6cube 1.8 0.21 0.02 0.04

degen2 1.9 0.55 0.48 0.49

degen3 1.0 0.56 0.49 0.49

dflO01 0.1 0.81 0.58 0.60

e226 4.4 0.47 0.63 0.62

etamacro 0.9 0,71 0.53 0.55

fffff80 1.40 0,34 0.46 0.45

finnis 0.9 0.74 0.66 0.67

fitld 56.3 0.00 0.00 0.00

fitlp 1.0 0.17 0.11 0,12

fit2d 50.6 0.00 0,00 0.00

fit2p 0.1 0.10 0.01 0.02

forplan 27.7 0.30 0.83 0.78

ganges 0.3 0.75 0.84 0.84

gfrd-pnc 0.5 0.72 0.83 0.82

greenbea 0.2 0.74 0.72 0.72

greenbeb 0.2 0.74 0.72 0.72

grow 15 2.9 0.77 0.65 0,66

grow22 2.0 0.54 0.56 0.56

grow7 6.2 0.50 0.46 0.47

israel 9.5 0,49 0.43 0.44

kb2 16.1 0.27 0.34 0.33

lotfi 2.3 0.59 0,56 0.56

maros 0.8 0.62 0.71 0.70

0.65 0.65 0.65

0.59 0.61 0.60

0.60 0.49 0.50

0,54 0.56 0.56

0.46 0.67 0.65

0.49 0.74 0.71

0.53 0.87 0.83

0,94 0.69 0.71

0.37 0.50 0.48

0.68 0.61 0.62

0.65 0.69 0.69

0.65 0.79 0.78

0,66 0.69 0.69

0.37 0.39 0,39

0.63 0.65 0,65

0.54 0.57 0.57

0.53 0.60 0.59

0.90 0.76 0.77

0.30 0.60 0,57

0,85 0.80 0.80

0.23 0.02 0.04

0.58 0.49 0.50

0.72 0,52 0.54

! .00 0.73 0.76

0.55 0.64 0.63

0.86 0.60 0.62

0.35 0.47 0.45

0.88 0.79 0.80

0,00 0.00 0.00

0.19 0.11 0.12

0.00 0.00 0.00

0.12 0.01 0.02

0.33 0.89 0,84

0.84 0.89 0.88

0.81 0.84 0.84

0.77 0.73 0.73

0.85 0.78 0,79

0.82 0,66 0.68

0.69 0.6 0.61
0.58 0.48 0.49

0.64 0.52 0.53

0.28 0.35 0,34

0.69 0.60 0.61

0.79 0.88 0.87

0.74 0.74 0,74

0.65 0.62 0.62

0.65 0.54 0.55

0.62 0.64 0.64

0.46 0.66 0.64

0,46 0.74 0.71

0.46 0.75 0.72

0.98 0.72 0.74

0.38 0.50 0.49

0.61 0.61 0.61

0.71 0.71 0.71

0.71 0.80 0.79

0.67 0.70 0.70

0.41 0.41 0.41

0.59 0.62 0.62

0.56 0.58 0.58

0.51 0.59 0.58

1.00 0.81 0.83

0.25 0,50 0.48

0.75 0.78 0.78

0,28 0.02 0.05

0.70 0.51 0.53

0.87 0.55 0.58

1.00 0.87 0.88

0.61 0.66 0.66

0.74 0,54 0.56

0.35 0.46 0.45

0.79 0.70 0.71

0.00 0.00 0.00

0,23 0.13 0.14

0.00 0,00 0.00

0.11 0.01 0.02

0.36 0.93 0.87

0.96 0.95 0.95

0.75 0.83 0.82

0.81 0.74 0.75
0.94 0.79 0.81

0.94 0.75 0.77

0,77 0.61 0,62
0.63 0.53 0.54

0.74 0.59 0.60

0.28 0.35 0,34

0.64 0.60 0.60

0.68 0.76 0.76

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

Table 1- -cont inued

47

Problem Dnsty % 0% dummy nodes 20% dummy nodes 40% dummy nodes

nesm 0.7 0.67 0.59 0.60 0.77 0.62 0.64 0.81 0.65 0.67

perold 0.7 0.74 0.60 0.61 0.88 0.71 0.73 0.90 0.71 0.73

pilot 0.8 0.42 0.47 0.47 0.52 0.51 0.51 0.47 0.51 0.51

pilot.ja 0.8 0.68 0.61 0.61 0.69 0.61 0.62 0.76 0.63 0.64

pilot.we 0.5 0.60 0.72 0.71 0.61 0.73 0.72 0.66 0.74 0.73

pilot4 1,3 0.74 0.61 0.62 1.00 0.74 0.77 1.00 0.75 0.78
pilot87 0.7 0.49 0.48 0.48 0.59 0.50 0.51 0.65 0.53 0.54

pilotnov 0.6 0.61 0.62 0.62 0.69 0.65 0.65 0.64 0.62 0.62

recipe 4.5 0.71 0.79 0.78 0.86 0.91 0.90 0.88 0.91 0.91

scl05 2.6 0.65 0.75 0.74 0.70 0.77 0.76 0.67 0.76 0.75

sc205 1.3 0.85 0.82 0.82 1.00 0.83 0.85 1.00 0.89 0.90

sc50a 5.5 0.58 0.65 0.64 0.71 0.79 0.78 0.60 0.67 0.66

sc50b 5.1 0.46 0.61 0.60 0.57 0.67 0.66 0.51 0.66 0.64

scagr25 0.9 0.79 0.84 0.84 0.88 0.85 0.86 1.00 1.00 1.00

scagr7 3.0 0.66 0.70 0.70 0.70 0.71 0.71 0.84 0.75 0.75

scfxml 1.7 0.63 0.70 0.69 0.81 0.74 0.75 0.98 0.79 0.81

scfxm2 0.9 0.72 0.82 0.81 0.94 1.00 0.99 1.00 1.00 1.00

scfxm3 0.6 0.83 0.86 0.86 0.97 0.88 0.89 1.00 0.90 0.91

scorpion 1.2 0.85 0.86 0.86 1.00 0.97 0.97 0.88 0,87 0.87

scrs8 0.7 0.51 0.80 0.77 0.52 0.81 0.78 0.52 0.80 0.78

scsdl 5.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

scsd6 2.8 0.17 0.16 0.16 0.19 0.17 0.17 0.18 0.16 0.16

scsd8 1.0 0.78 0.71 0.72 0.89 0.72 0.74 1.00 0.83 0.85

sctapl 1.4 0.84 0.71 0.72 1.00 0.73 0.76 1.00 0.83 0.85

sctap2 0.4 0.88 0.80 0.81 1,00 0.89 0.91 0.98 0.82 0.83

sctap3 0.3 0.89 0.82 0.83 0,99 0.88 0.89 1.00 0.92 0.93

seba 0.9 0.17 0.20 0.20 0,19 0.21 0.21 0.22 0.23 0.23

sharelb 4.5 0.46 0.65 0.63 0.52 0.66 0.65 0.74 0.72 0.72

share2b 9.5 0.71 0.71 0.71 0.74 0.72 0.72 0.78 0.73 0.74

shell 0.5 0.54 0.59 0.59 0~58 0.60 0.60 0.66 0.68 0.68

ship041 1,1 0.31 0.16 0.17 0,40 0.17 0.19 0.44 0.17 0.20

ship04s 1.1 0.32 0.41 0.40 0.37 0.43 0.42 0.40 0.47 0.46

ship081 0.6 0.98 0.97 0.97 1,00 1.00 1.00 1.00 1.00 1.00
ship08s 0.6 0.53 0.82 0.79 0.56 0.84 0.82 0.56 0.83 0.81

shipl21 0.4 0.61 0.64 0.64 0.71 0.68 0.68 0.67 0.69 0.68

shipl2s 0.4 0.67 0.74 0.73 0.85 0.91 0.91 0.74 0.80 0.79

sierra 0.4 0.71 0.84 0.83 0.82 0.89 0.88 0.86 0.92 0.92

stair 2.3 0.62 0.60 0.61 0,74 0.71 0.71 0.76 0.71 0.72

standata 0.8 0.38 0.71 0.68 0.47 0.78 0.75 0.42 0.77 0.74

standgub 0.7 0.30 0.71 0.67 0.30 0.71 0.67 0.33 0.73 0.69

standmps 0.7 0.36 0.65 0.63 0.37 0.66 0.63 0.40 0.66 0.64

stocforl 3.6 0.47 0.54 0.53 0.64 0.65 0.65 0.66 0.66 0.66

stocfor2 0.2 0.74 0.80 0.79 0.73 0.73 0.73 0.74 0.73 0.73

tuff 2.6 0.34 0.37 0.36 0.39 0.39 0.39 0.36 0.37 0.37

vtp.base 2.3 0.58 0.58 0.58 0.70 0.66 0.67 0.72 0.67 0.68

woodlp 11.0 0.12 0.01 0.02 0.13 0.01 0.02 0.12 0.01 0.02

woodw 0.4 0.27 0.17 0.18 0.37 0.17 0.19 0.41 0.18 0.21

48 M.C. Ferris, J.D. H o r n ~ M a t h e m a t i c a l P r o g r a m m i n g 80 (1998) 3 5 - 6 1

+ + + ~ ++ + +++ ~ ~.

+ "": iiii 2211 iiii •

Fig. 2. Sharelb - Original structure.

+ + ~ ~ + : +~÷ ,+ ~
" + + + , ~2111111',[',[[',',i[',[i[": ',',",',[',",[',','[[',77 ~

Fig. 3. Sharelb - 8 block partition, 0% dummy variables (/x = 0.63).

+ + + + + + +

Fig. 4. Sharelb - 8 block partition, 20% dummy variables (/z = 0.65).

v a r i a b l e s is i n c r e a s e d . N o t i c e h o w t h e r e is a t r a d e o f f b e t w e e n m a k i n g the n u m b e r o f

l i n k i n g c o n s t r a i n t s a n d v a r i a b l e s s m a l l a n d k e e p i n g a f a i r ly r e g u l a r b l o c k size. In m a n y

cases , o n e can see exac t l y w h e r e l i n k i n g v a r i a b l e s w e r e i n s e r t e d i n t o b l o c k s as t h e

n u m b e r o f d u m m y n o d e s is i n c r e a s e d .

M,C. Ferris, J.D. Horn/Mathematical Programming 80 (1998) 35-61 49

+

,+

~ + +~. + ~ .

......................... +++++2--

Fig. 5. Sharelb - 8 block partition, 40% dummy variables (/x = 0.72).

Fig. 6. PDS problem - Original structure.

Fig. 7. PDS problem - Randomly permuted.

In the second set of results, we show how well our heuristic identifies hidden structure

in a problem. To do this, we consider the Patient Distribution System problem [1] which

has a natural 11 block structure (see Fig. 6) and was obtained from the United States

Air Force. The problem we consider here is of size 1,386 by 3,729, with 11 blocks

50 M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998)35-61

Fig. 8. PDS problem - Result o f partitioning (/x = 0.94).

Fig. 9. Stocfor2 - Original structure.

Fig. 10. Stocfor2 - 2 block partition (/x = 0.90).

all approximately 125 by 340 with 90 coupling constraints. This structure is hidden by

randomly permuting its rows and columns (see Fig. 7). Our algorithm is then applied

to this matrix and the resulting matrix is shown in Fig. 8. Note that although 16 blocks

were requested, our algori thm returned the natural 1 l block structure since we gave the

M.C. Ferris, .I.D. Horn~Mathematical Programming 80 (1998) 35-61 51

Fig. 11. Stocfor2 - 4 block partition (/~ = 0.80).

Fig. 12. Stocfor2 - 8 block partition (/z = 0.73).

~- +

Fig. 13. Stocfor2 - 16 block partition (/z = 0.73).

graph par t i t ioning algori thm approximately 2,500 d u m m y nodes. The easier p rob lem of

f inding 11 blocks also finds a s imilar form without any difficulties. These results show

that our a lgor i thm effectively detects arrowhead form when it exists. For this problem,

our heuristic takes 1.7 seconds of CPU t ime on a Sparc 2 for the 16 block request. As

52 M.C. Ferris, J.D. Horn/Mathematical Programming 80 (1998) 35-61

Fig. 14. Stocfor2 - 32 block partition (/x = 0.69).

• ~+ ~

Fig. 15. Stocfor2 - 64 block partition (/z = 0.63).

Fig. 16. Stocfor2 - 128 block partition (/x = 0.55).

we shall see in Sect ion 4.2, this is a very small fraction o f the t ime needed for so lv ing

the under ly ing l inear p rogram on a parallel machine. This solut ion t ime is typical for

most o f the p rob lems that we have encountered. There are a few problems which take

longer (the worst is 25 seconds) .

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

+ y .

53

Fig. 17. Stocfor2 - 256 block partition (/z = 0.44).

For the remainder of the results in this section, we fix the level of dummy variables
at 20 percent. The /z values for different numbers of blocks for various of the problems
from the NETLIB collection are given in Table 2. In most cases, the/z value decreases
as the number of blocks increase as would be expected. There are exceptions to this rule
since the heuristic does not always give a globally optimal solution to the partitioning
problem. Some of the problems in the NETLIB suite do not split effectively into more
than 8 or 16 blocks due to their relative density. Further, our algorithm is much more
effective on very large and sparse problems, as would be expected.

Figs. 9-17 plot the partitioned matrix for the problem "stocfor2" using 20% dummy
variables. Note how effective the method appears to be in generating the blocks and the
increase in linking variables and coupling constraints for more blocks.

Certainly different solution techniques for linear and nonlinear programs will require
measures other than /z to find what is the best partitioning. The greedy technique for
partitioning can easily be modified to generate other partitionings if this is necessary
(for example, if linking variables are less costly than coupling constraints the tie break
could favor variables over constraints, etc.). Finally, we note that a-priori removal of
dense rows and columns from the matrix did not improve the resulting partition when
using our heuristics.

4. Parallel solution of linear programs

The remainder of this paper is concerned with the utility of the aforementioned
partitioning algorithm. We apply the matrix partitioning scheme to linear programming
problems arising in the NETLIB collection [7] to form a singly-bordered block-diagonal
linear program (see Section 2). We then apply a variant of the bundle method to an ap-
propriately formed dual problem and implement the resulting algorithm on the Thinking
Machines CM-5 to obtain an efficient parallel method for general linear programming
problems.

After partitioning, the linear programming problem that we solve has the form

54 M.C. Ferris, ,I.D. Horn~Mathematical Programming 80 (1998) 35-61

Table 2
/x values for partitions into varying numbers of blocks

Problem Number of blocks requested

2 4 8 16 32 64 128 256

25fv47 0.97 0.88 0.65 0.73 0.69 0.58 0.45 0.27

80bau3b 0.78 0.62 0.60 0.59 0.56 0.52 0.43 0.41

adlittle 0.95 0.59 0.50 0.47 0.35 0.18 0.10 0.03

afiro 1.00 0.77 0.56 0.51 0.33 O. 16 0.00 0.00

agg 0.80 0.74 0.65 0.44 0.27 0.19 0.19 0.18

agg2 1.00 0.89 0.71 0.76 0.59 0.53 0.48 0.45

agg3 1.00 1.00 0.83 0.78 0.66 0.57 0.53 0.50

bandm 0.91 0.77 0.71 0.66 0.58 0.43 0.34 0.34

beaconfd 0.73 0.49 0.48 0.46 0.44 0.44 0.38 0.28

blend 0.75 0.75 0.62 0.46 0.29 0.18 0.00 0.00

bnll 0.84 0.75 0.69 0.62 0.58 0.52 0.48 0.37

bnl2 0.87 0.83 0.78 0.71 0.66 0.60 0.58 0.52

boeing 1 1.00 0.73 0.69 0.66 0.62 0.57 0.44 0.34

boeing2 0.65 0.52 0.39 0.34 0.32 0.25 O. 17 O. 16

bore3d 0.85 0.74 0.65 0.62 0.52 0.49 0.41 0.38

brandy 0.80 0.66 0.57 0.49 0.42 0.40 0.34 0.31

capri 0.80 0.62 0.59 0.50 0.42 0.34 0.27 0.17

cycle 0.91 0.80 0.77 0.70 0.66 0.58 0.55 0.41

czprob 0.91 0.61 0.57 0.48 0.41 0.43 0.44 0.43

d2q06c 0.94 0.89 0.80 0.79 0.75 0.66 0.52 0.41

d6cube 0.32 0.06 0.04 0.04 0.02 0.00 0.00 0.00

degen2 0.71 0.61 0.50 0.45 0.37 0.29 0.21 0.13

degen3 0.78 0.60 0.54 0.45 0.34 0.30 0.25 0.20

dflO01 1.00 0.83 0.76 0.67 0.60 0.57 0.49 0.44

e226 0.81 0.71 0.63 0.59 0.46 0.39 0.35 0.34

etamacro 0.92 0.69 0.62 0.56 0.45 0.40 0.29 0.18

fffff800 0.83 0.54 0.45 0.34 0.33 0.28 0.28 0.27

finnis 1.00 0.87 0.80 0.69 0.66 0.61 0.56 0.45

fit I p 0.60 0.24 O. 12 O. 12 0.00 0.00 0.00 0.00

fit2p O. 14 0.04 0.02 0.02 0.02 0.00 0.00 0.00

forplan 0.96 0.88 0.84 0.68 0.62 0.54 0.42 0.35

ganges 1.00 0.92 0.88 0.78 0.74 0.66 0.57 0.48

gfrd-pnc 0.97 0.87 0.84 0.82 0.79 0.72 0.65 0.52

greenbea 0.96 0.83 0.73 0.61 0.57 0.47 0.38 0.26

greenbeb 1.00 0.90 0.79 0.66 0.62 0.51 0.41 0.28

grow ! 5 0.97 0.72 0.68 0.60 0.55 0.00 0.00 0.00

grow22 0.66 0.64 0.61 0.52 0.39 O. 18 0.00 0.00

grow7 0.76 0.53 0.49 0.30 0.00 0.00 0.00 0.00

israel 0.78 0.64 0.53 0.57 0.54 0.33 0.25 0.21

kb2 0.55 0.52 0.34 0.24 O. 18 O. 19 0.00 0.00

lotfi 0.92 0.65 0.61 0.57 0.49 0.52 0.47 0.40

maros 1.00 0.95 0.87 0.82 0.79 0.71 0.51 0.36

nesm 0.87 0.71 0.64 0.57 0.50 0.46 0.44 0.37

perold 1.00 0.83 0.73 0.63 0.55 0.36 0.28 0.21

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61 55

Table 2 - - continued

Problem Number of blocks requested

2 4 8 16 32 64 128 256

pilot 0.75 0.62 0.51 0.37 0.23 0.21 0.15 0.14

pilot.ja 0.97 0.74 0.62 0.55 0.46 0.39 0.35 0.29

pilot.we 1.00 0.80 0.72 0.60 0.56 0.40 0.29 0.23

pilot4 1.00 0.99 0.77 0.60 0.49 0.44 0.39 0.21

pilot87 0.87 0.68 0.51 0.39 0.37 0.23 0.19 0.16

pilotnov 0.86 0.71 0.65 0.59 0.52 0.44 0.38 0.29
recipe 1.00 0.93 -0 .90 0.76 0.46 0.26 0.01 0.00
scl05 0.95 0.84 0.76 0.61 0.45 0.32 0.24 0.17

sc205 1.00 0.94 0.85 0.72 0.62 0.47 0.37 0.24

sc50a 1.00 0.88 0.78 0.58 0.41 0.25 0.00 0.00

sc50b 0.92 0.79 0.66 0.56 0.44 0.33 0.00 0.00

scagr25 0.97 0.91 0.86 0.85 0.75 0.69 0.62 0.55

scagr7 0.87 0.79 0.71 0.63 0.56 0.52 0.46 0.33

scfxml 1.00 0.87 0.75 0.65 0.59 0.48 0.38 0.32

scfxm2 1.00 1.00 0.99 0.83 0.72 0.64 0.56 0.45

scfxm3 1.00 0.95 0.89 0.77 0.74 0.62 0.53 0.47

scorpion 1.00 1.00 0.97 0.94 0.92 0.87 0.66 0.45

scrs8 0.91 0.80 0.78 0.69 0.62 0.50 0.46 0.43

scsd 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

scsd6 0.25 0.64 0.17 0.04 0.02 0.04 0.00 0.00

scsd8 0.75 0.92 0.74 0.36 0A0 0.04 0.04 0.00

sctap I 0.90 0.81 0.76 0.62 0.55 0.46 0.38 0.15

sctap2 1.00 0.97 0.91 0.86 0.80 0.72 0.59 0.44

sctap3 1.00 0.94 0.89 0.83 0.77 0.71 0.61 0.53

seba 0.26 0.22 0.21 0.20 0.20 0.19 0.17 0.14

share lb 0.78 0.71 0.65 0.53 0.36 0.12 0.13 0.09

share2b 0.89 0.75 0.72 0.32 0.21 0.16 0.19 0.19

shell 0.65 0.62 0.60 0.53 0.47 0.44 0.41 0.36

ship041 1.00 0.46 0.19 0.21 0.16 0.11 0.11 0.08

ship04s 0.56 0.47 0.42 0.41 0.38 0.36 0.35 0.34

ship081 1.00 1.00 1.00 0.73 0.53 0.47 0.40 0.33

ship08s 0.88 0.89 0.82 0.76 0.73 0.70 0.66 0.64

shipl21 1.00 0.70 0.68 0.59 0.50 0.48 0.44 0.42

ship 12s 1.00 0.98 0.91 0.90 0.87 0.85 0.79 0.79

sierra 1.00 1.00 0.88 0.79 0.75 0.77 0.69 0.52

stair 0.97 0.85 0.71 0.48 0.34 0.23 0.18 0.15

standata 0.90 0.77 0.75 0.68 0.66 0.59 0.57 0.54

standgub 0.87 0.69 0.67 0.63 0.62 0.58 0.53 0.52

standmps 0.86 0.76 0.63 0.56 0.52 0.43 0.46 0.43
stocforl 1.00 0.75 0.65 0.56 0.49 0.43 0.30 0.13

stocfor2 0.90 0.80 0.73 0.73 0.69 0.63 0.55 0.44

tuff 0.78 0.43 0.39 0.32 0.30 0.31 0.27 0.20

vtp.base 0.95 0.80 0.67 0.62 0.53 0.49 0.49 0.36

woodlp 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01

woodw 1.00 0.67 0.19 0.14 0.10 0.10 0.05 0.05

56 M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

K

m i n E cT xi
X=(Xl,...,XK)

i=1

subject t o Bix i = bi, xi c X i

K

E Rix i = r.
i=1

Note that simple bound constraints on the variables have been represented as xi C
Xi. There are several known techniques for solving problems of this form in parallel

[3,30,31,11,14]. We now outline the method that we use in this paper.

4.1. Bundle-level decomposition

For notational simplicity, we let

~ cVi xi i f B i x i = bi, xi C Xi,

f i (x i) := [. + o e otherwise,

and we note that f i is a closed convex function, proper if the ith block is feasible. Our

problem is rewritten as

K K

X=(Xl,...,XK) [~
i=I i=1

Following Robinson [27,26], we introduce a perturbation function

f i (x i) i f r -- Rix i = p,
F (x , p) := _ i=1

I. + o c otherwise,

a Lagrangian

K

L(x, y) := inf{yTp + F (x , p) } = yTr + ~ { f i (x i) - yTRixi},
P i=1

and a dual problem

s u p g (y) ,
Y

where

K

* ' R y " , g(y) := i n f L (x , y) = yTr-- E f i I i Y)
x i=1

with

f* (RTy) = sup{ yT Rixi -- f i (xi) }.
xi

(1)

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61 57

(R i y) is easily calculated by solving the following Note that, for a given value of y, f/* T
linear program, the dimension of which is the size of the corresponding block B i

m a x { (y T R i - - c T) x i B i x i = b i , x i E Xi}. (2)
x,

Under the constraint qualification

K

r E Z Ri(ri dom f *) ,
i=1

the dual problem (1) has a solution and the dual optimal value is equal to the primal
optimal value. Thus we solve the dual problem (1), whose dimension is given by the

number of coupling constraints q.
Note that g is a concave function, but it is not necessarily differentiable. However,

it is possible (under the condition n ~ l (imR/T N r i d o m f [) 4: 0) to determine at least
one subgradient of (-) g using

K

Og(y) = r - Z RiOfi*(RTy)'
i=1

where

Of* (RT y) = arg min{fi(xi) -- yT Rixi },

as shown in [28, p. 223]. Thus a subgradient at y of (-) g can be calculated by solving

the K subproblems (2). Therefore, to solve (1) we use the bundle-level algorithm from
[18], which is now discussed in more detail. Other related work on bundle methods

can be found in [19,30,21,2].
Suppose that we wish to

where f is a convex function and Q represents some simple convex constraint set. The
algorithm builds a piecewise linear convex "model" function m which underestimates f

and is given by

m(x) := max { f (x j) + f t (x J) (x - xJ)},
j=l ,...,i

where f~(xJ) E Of(xJ) and x j are the points the algorithm has already visited. Note
that superscripts on the x represent different vectors in R N, whereas subscripts refer to

component vectors of x. We can therefore calculate a lower and upper bound on the

optimal value of f by evaluating

f , = minimum value of model m over Q,

f* = minimum function value already seen.

Associated with f* is an attaining x*. The algorithm chooses the next point at which
to evaluate the function and a subgradient by projecting x* onto a carefully chosen

5 8 M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

level set of the model function m. The "level" L is adjusted depending on how well the
algorithm is progressing. A full description is now given.

Given x I E Q and A c (0, 1), let A~ = ~ . Having x i, repeat the following steps until
convergence is attained:

(i) Calculate f (x i) and ft(xi) E cgf(xi).
(ii) Evaluate f . , f* and x* and let A = f* -- f . .

(iii) Let L t = Af . + (1 - A)f* and determine the new level by

L' i fA < AA~_1,

L = min{L ~,L} otherwise,

where

A if A < AA~_~,

A~_ 1 otherwise.

(iv) Project x* onto the level set of the model ML = {x E Q] re(x) <~ L}, that is,

X i+l : ¢r(x*IML).

It can be shown (see [18]) that this technique will generate function values arbitrarily

close to the optimal value under a simple compactness assumption on Q. Each iteration
requires the evaluation of f (x i) and fl(xi) which can be carried out in parallel in our
work as described above. The synchronization requires the solution of a simple linear

program and projection problem, both over the same feasible set. This can be carried out
very easily using crash techniques and restarts. The key to the success of this approach

is a partition with roughly equal sized blocks and few coupling constraints.

4.2. Parallel implementation

The algorithm for solving linear programs given in the previous section has been
implemented in PVM C libraries [8] on the Thinking Machines CM-5 supercomputer

and used to solve a variety of the largest linear programs in the NETLIB collection [7].
PVM [8] is a set of C libraries that facilitate parallel programming in a message

passing environment. The libraries are portable to a variety of parallel computers and
also function well in distributed parallel applications.

In our implementation, message passing is used to handle data associated with the
linear and quadratic programs used for synchronization. The first part of our code
partitions the constraints of the problems according to the algorithm given in Section 2.
The output of this phase are two permutations, one for the constraints and one for the

variables, the application of which gives the constraint matrix an arrowhead form. In
determining these permutations, we treat all the constraints as if they were equalities
and do not add slack variables since it is extremely likely that the slack variables would

be added to the constraint blocks that we generate anyway, and the extra preprocessing
work is not justified. This hypothesis could be tested in future work.

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61

Table 3
Parallel solution statistics

59

Problem % Density Dual Dim 32 Block/x Iters % Efficiency

sc205 1.30 92 0.62 7 89.7
scfxm3 0.60 348 0.74 10 91.0
sierra 0.40 409 0.75 13 90.7
scagr25 0.90 321 0.75 10 80.3
bnl2 0.20 148 0.66 9 88.1
sctap2 0.40 273 0.80 12 85.2
sctap3 0.30 520 0.74 11 83.5
stocfor2 0.22 240 0.69 11 87.2
scorpion 1.20 76 0.92 7 90.6
gfrd-pnc 0.50 164 0.79 10 87.3

Once the partitioning is complete, we apply the bundle-level method to the resulting

linear program. For the function and gradient evaluation steps we use an implementation
of the revised simplex method written in C which incorporates the Reid basis updating

technique [25] and other computational enhancements [24]. The synchronization steps

solve the linear programs using the same code as the parallel steps, the quadratic program

resulting from the projection is solved using a method due to Mifflin [22].

Special care is taken during the synchronization step to ensure that the vector y is

indeed a subgradient. If a y is generated such that RTy ~ dom f/*, then the level is
reduced by a multiplicative factor and the resulting problems are resolved in parallel

until a suitable y is found. Using this technique we have circumvented the compactness

assumptions required by the theory. This is not guaranteed to work, but has proven very

effective in our computations.

In Table 3 we report the results on the subset of the NETLIB problems that had

very good/x values. We give problem density, the 32 block/z value calculated by our
algorithm, the number of steps that the bundle-level method took to solve the problem

on 32 processors and the parallel speedup efficiency. Our termination criterion required

that two successive iterations have objective function values within 10 -9 of each other.

The speedups for all of the problems are rather good. It should be noted that as the

number of linking constraints grows, the efficiency decreases due to the difficulty of

treating such constraints. Contrary to popular belief, however, the bundle-level method

would appear to be a promising approach for solving such structured problems. Further

computational comparison is needed between the bundle-level method and the other

methods mentioned elsewhere in this paper, but this is beyond the scope of this work.

5. Conclusions

We have shown how to reorder the variables and constraints of a mathematical program

in order to detect underlying arrowhead structure. The technique uses graph partition-
ing algorithms on the associated graph of the constraint matrix. We demonstrated the

effectiveness of our heuristics on the NETLIB problems and solved several of the larger

problems with high parallel efficiency.

60 M.C. Ferris, .I.D. Horn~Mathematical Programming 80 (1998) 35-61

We r e c o m m e n d the fo l lowing three techniques.

(i) Mul t i l eve l par t i t ioning a lgor i thms that combine spectral methods and the Ker-

n i g h a n - L i n heurist ic, as implemen ted in [15,12].

(i i) Add ing 20 % d u m m y nodes to the graph to a l low uneven part i t ions.

(i i i) Bundle - leve l methods for so lv ing the result ing mathemat ica l programs.

References

[1] W.J. Carolan, J.E. Hill, J.L. Kennington and S. Niemi and S.J. Wichmann, An empirical evaluation of
the KORBX algorithms for military airlift applications, Operations Research 38 (1990) 240-248.

[21 B.J. Chun, S.J. Lee and S.M. Robinson, An implementation of the bundle decomposition algorithm,
Technical Report 91-6, Department of Industrial Engineering, University of Wisconsin, Madison, WI,
1991.

[3] G.B. Dantzig and E Wolfe, Decomposition principle for linear programs, Operations Research 8 (1960)
101-111.

[4] I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices (Oxford University Press,
Oxford, UK, 1986).

[5] M.C. Ferris and O.L. Mangasarian, Parallel constraint distribution, SIAM Journal on Optimization 1
(1991) 487-500.

[6] M.C. Ferris and O.L. Mangasarian, Parallel variable distribution, SlAM Journal on Optimization 4 (1994)
815-832.

[7] D.M. Gay, Electronic mail distribution of linear programming test problems, COAL Newsletter 13 (1985)
10-12.

[8] G.A. Geist, A.L. Beguelin, J.J. Dongarra, W. Jiang, R. Manchek and V.S. Sunderam, PVM: Parallel
Virtual Machine (MIT Press, Cambridge, MA, 1994).

[9] A. George, An automatic one-way dissection algorithm for irregular finite-element problems, SIAM J.
Numer. Anal. 17 (1980) 740-751.

[10] J.R. Gilbert and E. Ng, Predicting structure in nonsymmetric sparse matrix factorizations, in: A. George,
J. Gilbert and J. Liu, eds., Graph Theory and Sparse Matrix Computation (Springer, Berlin, 1993).

[11] R.V. Helgason, J.L. Kennington and H.A. Zaki, A parallelization of the simplex method, Annals of
Operations Research 14 (1988) 17-40.

[12] B. Hendrickson and R. Leland, The Chaco user's guide: Version 2, Technical Report SAND94-2692,
Sandia National Laboratories, Albuquerque, NM, 1994.

[13] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in: Proceedings of
Supercomputing "95, 1995.

[14] J.K. Ho, T.C. Lee and R.E Sundarraj, Decomposition of linear programs using parallel computation,
Mathematical Programming 42 (1988) 391-405.

[15] G. Karypis and V. Kumar, METIS: Unstructured graph partitioning and sparse matrix ordering system,
version 2.0, Technical Report, University of Minnesota, Department of Computer Science, 1995.

[16] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Technical Report
95-064, University of Minnesota, Department of Computer Science, 1995.

[17] B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System
Technical Journal 29 (1970) 291-307.

118] C. Lemarrchal, A. Nemirovskii and Y. Nesterov, New variants of bundle methods, Mathematical
Programming 69 (1995) 111-147.

[19] C. Lemarrchal, J.J. Strodiot and A. Bihain, On a bundle algorithm for nonsmooth optimization, in: O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, eds., Nonlinear Programming, Vol. 4 (Academic Press,
New York, 1981) 245-282.

[20] D. Medhi, Decomposition of structured large-scale optimization problems and parallel optimization,
Ph.D. Thesis, Technical Report 718, Computer Sciences Department, University of Wisconsin, Madison,
WI, 1987.

[21] D. Medhi, Parallel bundle-based decomposition for large-scale structured mathematical programming
problems, Annals of Operations Research 22 (1990) 101-127.

M.C. Ferris, J.D. Horn~Mathematical Programming 80 (1998) 35-61 61

[22] R. Mifflin, A stable method for solving certain constrained least squares problems, Mathematical
Programming 16 (1979) 141-158.

[23] J.M. Mulvey and A. Ruszczynski, A diagonal quadratic approximation methods for large scale linear
programs, Operations Research Letters 12 (1992) 205-215.

[24] J.L. Nazareth, Computer Solution of Linear Programs (Oxford University Press, Oxford, 1987).
[25] J.K. Reid, A sparsity-exploiting variant of the Bartels-Golub decompostion for linear programming

bases, Mathematical Programming 24 (1982) 55-69.
[26] S.M. Robinson, Bundle-based decomposition: Description and preliminary results, in: A. Prrkopa, J.

Szelezc~n and B. Straazicky, eds., System Modeling and Optimization, Lecture Notes in Control and
Information Sciences, Vol. 84 (Springer, Berlin, 1986) 751-756.

[27] S.M. Robinson, Bundle-based decomposition: Conditions for convergence, in: H. Attouch, J.E Aubin, E
Clarke and 1. Ekeland, eds., Analyse Non Lin~aire (Gauthier-Villars, Paris, 1989) 435-447.

[28] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[2911 A. Ruszczynski, On the regularized decomposition for stochastic programming problems, in: K. Marti

and P. Kall, eds., Stochastic Programming: Numerical Techniques and Engineering Applications, Lecture
Notes in Control and Information Sciences, Vol. 425 (Springer, Berlin, 1995) 93-108.

[30] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual
idea, convergence analysis, numerical results, SIAM Journal on Optimization 2 (1992) 121-152.

[31] G.L. Schultz and R.R. Meyer, An interior point method for block angular optimization, SlAM Journal
on Optimization 1 (1991) 583-602.

