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Abstract. We investigate the use of interior-point methods for solving quadratic programming
problems with a small number of linear constraints, where the quadratic term consists of a low-rank
update to a positive semidefinite matrix. Several formulations of the support vector machine fit into
this category. An interesting feature of these particular problems is the volume of data, which can
lead to quadratic programs with between 10 and 100 million variables and, if written explicitly, a
dense Q matrix. Our code is based on OOQP, an object-oriented interior-point code, with the linear
algebra specialized for the support vector machine application. For the targeted massive problems,
all of the data is stored out of core and we overlap computation and input/output to reduce overhead.
Results are reported for several linear support vector machine formulations demonstrating that the
method is reliable and scalable.
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1. Introduction. Interior-point methods [30] are frequently used to solve large
convex quadratic and linear programs for two reasons. First, the number of itera-
tions taken is typically either constant or grows very slowly with the problem dimen-
sion. Second, the major computation involves solving (one or) two systems of linear
equations per iteration, for which many efficient, large-scale algorithms exist. Thus,
interior-point methods become more attractive as the size of the problem increases.
General-purpose implementations of these methods can be complex, relying upon so-
phisticated sparse techniques to factor the relevant matrix at each iteration. However,
the basic algorithm is straightforward and can be used in a wide variety of problems
by simply tailoring the linear algebra to the application.

We are particularly interested in applying an interior-point method to a class
of quadratic programs with two properties: each model contains a small number of
linear constraints, and the quadratic term consists of a (dense) low-rank update to a
positive semidefinite matrix. The key to solving these problems is to exploit structure
using block eliminations. One source of massive problems of this type is the data
mining community, where several linear support vector machine (SVM) formulations
[28, 1, 2, 19] fit into the framework. A related example is the Huber regression problem
[17, 21, 31], which can also be posed as a quadratic program of the type considered.

The linear SVM attempts to construct a hyperplane partitioning two sets of ob-
servations, where each observation is an element of a low-dimensional space. An
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interesting characteristic of these models is the volume of data, which can lead to
quadratic programs with between 10 and 100 million variables and, if written explic-
itly, a dense Q matrix. The large number of practical applications of the SVM [6, 26]
is indicative of the importance of robust, scalable algorithms to the data mining and
machine learning communities.

Sampling techniques [3] can be used to decrease the number of observations needed
to construct a good separating surface. However, if we considered a “global” appli-
cation and randomly sampled only 1% of the current world population, we would
generate a problem with around 60 million observations. Recent work [10] has shown
that although a random sampling of 20–30% is sufficient for many applications, sam-
pling even as high as 70–80% can produce statistically significant differences in the
models. Furthermore, for comparative purposes, a researcher might wish to solve the
nonsampled problem to validate the choice of sampling technique.

Solving realistic, large-scale models of this form raises important research issues.
In particular, codes targeting massive problems need to handle the required data
volume effectively. For example, one dense vector with 50 million double-precision
elements requires 400 megabytes of storage. If all data were to be kept in core,
we would rapidly exhaust the memory resources of most machines available today.
Therefore, we store all data out of core and overlap computation and input/output
(I/O) to reduce the overhead inherent in such a scheme.

As mentioned above, the crucial implementation details are in the linear algebra
calculation. Rather than reimplement a standard predictor-corrector interior-point
code [23], we use OOQP [11, 12] as the basis for our work. A key property of OOQP
is the object-oriented design, which enables us to tailor the required linear algebra
to the application. Our linear algebra implementation exploits problem structure
while keeping all of the data out of core. A proximal-point modification [25] to the
underlying algorithm is also available to improve robustness on some of the SVM
formulations considered.

We begin in section 2 by formally stating the general optimization problem we are
interested in solving, and we show specializations of the framework for linear SVMs
and Huber regression. In section 3, we describe the interior-point method and linear
algebra requirements. The basic proximal-point idea is discussed, and we demonstrate
the use of block eliminations to exploit problem structure. The implementation of the
linear algebra using out of core computations is presented in section 4, along with some
numerical considerations for massive problems. In section 5, we present experimental
results for several linear SVM formulations on two large, randomly generated data sets.
These results indicate that the method is reliable and scalable to massive problems.
In section 6, we summarize our work and briefly outline future efforts.

2. Quadratic programming framework. The general optimization problem
we consider has a quadratic term consisting of a low-rank update to a positive semidef-
inite matrix and a small number of linear constraints. In particular, the problems
discussed have m variables, n constraints, and a rank-k update. Let Q ∈ �m×m be
of the form

Q = S +RHRT ,

where S ∈ �m×m is symmetric positive semidefinite, H ∈ �k×k is symmetric positive
definite, and R ∈ �m×k. Typically, S is a very large matrix while H is small. We are
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concerned with solving the convex problem

minx
1
2x

TQx+ cTx
s.t. Bx = b,

 ≤ x ≤ u
(2.1)

for given B ∈ �n×m with full row rank, b ∈ �n, c ∈ �m, and general bounds,
 ∈ �m ∪ {−∞}m and u ∈ �m ∪ {+∞}m with  < u. We assume that k + n 	 m.
That is, the rank of the update and the number of constraints must be small in relation
to the overall size of the problem.

To solve instances of this problem, we exploit structure in the matrices generated
by an interior-point algorithm using block eliminations. The underlying operations
are carried out in the context of the machine learning applications outlined below.
As will become evident, in addition to the assumptions made concerning the form
of the quadratic program, we also require that the matrices H and S + T can be
inverted easily for any positive diagonal matrix T . These assumptions are satisfied
in our applications because H and S are diagonal matrices. However, general cases
satisfying these criteria clearly exist.

2.1. Linear SVMs. The linear SVM attempts to construct a hyperplane {x |
wTx = γ} correctly separating two point sets with a maximal separation margin.
Several quadratic programming formulations exist in the data mining literature [28,
1, 2, 19] for these problems, which are becoming increasingly important because of
the large number of practical applications [6, 26]. The common variation among the
optimization models is in the choice of the subset of the variables (w and γ) selected
to measure the separation margin and the norm used for the misclassification error.

We first introduce some notation chosen to be consistent with that typically used
in the data mining literature. We let A ∈ �m×k be a (typically dense) matrix repre-
senting a set of observations drawn from two sample populations, where m is the total
number of observations and k the number of features measured for each observation,
with k 	 m. Typically, the observation matrix A is scaled so that ‖A‖∞ ≈ k. Let
D ∈ �m×m be a diagonal matrix defined as

Di,i :=

{
+1 if i ∈ P+,
−1 if i ∈ P−,

where P+ and P− are the indices of the elements in the two populations. We use the
notation e to represent a vector of all ones of the appropriate dimension.

The standard SVM [28, 6] is the following optimization problem:

minw,γ,y
1
2 ‖w‖2

2 + νeT y
subject to D(Aw − eγ) + y ≥ e,

y ≥ 0.
(2.2)

The essential idea is to minimize a weighted sum of the one-norm of the misclassifica-
tion error, eT y, and the two-norm of w, the normal to the hyperplane being derived.
The relationship between minimizing ‖w‖2 and maximizing the margin of separation
is described, for example, in [22]. Here, ν is a parameter weighting the two compet-
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ing goals related to misclassification error and margin of separation. The inequality
constraints implement the misclassification error.

Various modifications of (2.2) are developed in the literature. The motivation
for many of them is typically to improve the tractability of the problem and to allow
novel reformulations in the solution phase. For example, one formulation incorporates
γ into the objective function:

minw,γ,y
1
2 ‖w, γ‖2

2 + νeT y
subject to D(Aw − eγ) + y ≥ e,

y ≥ 0.
(2.3)

This formulation is described in [20] to allow successive overrelaxation to be applied
to the (dual) problem.

A different permutation replaces the one-norm of y in (2.3) with the two-norm,
such that the nonnegativity constraint on y becomes redundant. The resulting prob-
lem, first introduced in [22], is then

minw,γ,y
1
2 ‖w, γ‖2

2 +
ν
2 ‖y‖2

2

subject to D(Aw − eγ) + y ≥ e.
(2.4)

An active set method on the Wolfe dual of (2.4) is proposed in [22] to calculate a solu-
tion. Concurrent with work described here, Mangasarian and Musicant advocated the
use of the Sherman–Morrison–Woodbury update formula in their active set algorithm.

Another variant considered [5] is a slight modification of (2.4):

minw,γ,y
1
2 ‖w‖2

2 +
ν
2 ‖y‖2

2

subject to D(Aw − eγ) + y ≥ e.
(2.5)

We can also use a one-sided Huber M-estimator [16] for the misclassification
error within the linear SVM. This function is a convex quadratic for small values
of its argument and is linear for large values. The resulting quadratic program is a
combination of (2.2) and (2.5),

minw,γ,y,t
1
2 ‖w‖2

2 +
ν1

2 ‖t‖2
2 + ν2e

T y
subject to D(Aw − eγ) + t+ y ≥ e,

y ≥ 0,
(2.6)

where ν1 and ν2 are two parameters. We note that ν2

ν1
is the switching point be-

tween the quadratic and linear error terms. When ν1 → ∞ or ν2 → ∞, we recover
(2.2) or (2.5), respectively. A similar unification of (2.3) and (2.4) can be made by
incorporating γ into the objective function of (2.6). For completeness, this problem
is

minw,γ,y,t
1
2 ‖w, γ‖2

2 +
ν1

2 ‖t‖2
2 + ν2e

T y
subject to D(Aw − eγ) + t+ y ≥ e,

y ≥ 0.
(2.7)

As stated, these problems are not in a form matching (2.1). However, the Wolfe
duals [18] of (2.2)–(2.7) are, respectively,
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minx
1
2x

TDAATDx− eTx
subject to eTDx = 0,

0 ≤ x ≤ νe,
(2.8)

minx
1
2x

TDAATDx+ 1
2x

TDeeTDx− eTx
subject to 0 ≤ x ≤ νe,

(2.9)

minx
1
2νx

Tx+ 1
2x

TDAATDx+ 1
2x

TDeeTDx− eTx
subject to x ≥ 0,

(2.10)

minx
1
2νx

Tx+ 1
2x

TDAATDx− eTx
subject to eTDx = 0,

x ≥ 0,
(2.11)

minx
1

2ν1
xTx+ 1

2x
TDAATDx− eTx

subject to eTDx = 0,
0 ≤ x ≤ ν2e,

(2.12)

minx
1

2ν1
xTx+ 1

2x
TDAATDx+ 1

2x
TDeeTDx− eTx

subject to 0 ≤ x ≤ ν2e,
(2.13)

which are of the desired form. In addition to the papers cited above, several specialized
codes have been applied to solve (2.8); for example, see [24]. Once the dual problems
above are solved, the hyperplane in the primal problems can be recovered as follows:

• w = ATDx, and γ is the multiplier on eTDx = 0 for (2.2), (2.5), and (2.6).
• w = ATDx, and γ = −eTDx for (2.3), (2.4), and (2.7).

Clearly, (2.8)–(2.13) are in the class of problems considered. Rather than become
embroiled in a debate over the various formulations, we show that our method can
be successfully applied to any of them, and we leave the relative merits of each to be
discussed by application experts in the machine learning field.

2.2. Huber regression. A problem related to the SVM is to determine a Huber
M-estimator, as discussed in [17, 21, 28, 31]. For an inconsistent system of equations,
Aw = b, an error residual is typically minimized, namely,

∑m
i=1 ρ((Aw−b)i). In order

to deemphasize outliers and avoid nondifferentiability when ρ(·) = | · |, the Huber
M-estimator [16] has been used.

The corresponding optimization problem is a convex quadratic program,

minw,y,t
1
2 ‖t‖2

2 + νeT y
subject to −y ≤ Aw − b− t ≤ y,

whose dual has the form

minx
ν
2 ‖x‖2

2 + bTx
subject to ATx = 0,

−e ≤ x ≤ e.

The dual has the structure considered whenever the number of observations m is
enormous and the number of features k is small. The aforementioned references
indicate how to recover a primal solution from the dual.
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3. Interior-point method. Since (2.1) is a convex quadratic program, the
Karush–Kuhn–Tucker first-order optimality conditions [18] are both necessary and
sufficient. These optimality conditions can be written as the mixed complementarity
problem 


S +RHRT −BT −I I

B 0 0 0
I 0 0 0
−I 0 0 0







x
λ
w
v


+




c
−b
−
u


 ⊥

x free,
λ free,
w ≥ 0,
v ≥ 0,

(3.1)

where we have augmented the system with slack variables to handle general lower and
upper bounds. The ⊥ notation is defined componentwise by using

• a ⊥ b ≥ 0 if and only if a ≥ 0, b ≥ 0, and ab = 0,
• a ⊥ b free if and only if a = 0.

If the lower or upper bounds are infinite, then the corresponding w and v variables
are removed from the problem. The reason for adding slack variables is to eliminate
the bounds on x and make the initial starting-point calculation easy.

The basic idea of an interior-point method for (3.1) is to solve the equivalent
nonlinear system of equations

(S +RHRT )x−BTλ− w + v = −c,
Bx = b,

x−  = y,
u− x = z,
Wy = 0,
V z = 0,

(3.2)

with w ≥ 0, v ≥ 0, y ≥ 0, and z ≥ 0, where W and V are the diagonal matrices
formed from w and v. Furthermore, y and z represent the variables complementary
to w and v. Convergence results for these methods can be found in [30] and are not
discussed here. Specializations of the interior-point method to the SVM case can be
found in [27].

The Mehrotra predictor-corrector method [23] is a specific type of interior-point
method. The iterates for the algorithm are guaranteed to remain interior to the
simple bounds; that is, wi > 0, vi > 0, yi > 0, and zi > 0 for each iteration i. During
the predictor phase, we calculate the Newton direction for (3.2), while the corrector
moves the iterate closer to the central path. The direction (∆x,∆λ,∆w,∆v,∆y,∆z)
is calculated by solving the linearization



S +RHRT −BT −I I 0 0
B 0 0 0 0 0
I 0 0 0 −I 0
−I 0 0 0 0 −I
0 0 Yi 0 Wi 0
0 0 0 Zi 0 Vi







∆x
∆λ
∆w
∆v
∆y
∆z




=




−c− (S +RHRT )xi +BTλi + wi − vi
b−Bxi

− xi + yi
−u+ xi + zi

−Wiyi + σ (wi)
T yi+(vi)

T zi
2m e

−Vizi + σ (wi)
T yi+(vi)

T zi
2m e



,
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where σ ∈ [0, 1] is a chosen parameter. Different choices for σ give rise to the predictor
and the corrector steps, respectively. Since these two systems just differ in the right-
hand sides, in the following we simplify our presentation by omitting the details of
these vectors and replacing them with generic terms r.

The particular structure of the above linearization allows us to eliminate the
variables ∆w, ∆v, ∆y, and ∆z from the system. Thus, at each iteration of the
algorithm, we solve two systems of linear equations of the form

[
C +RHRT −BT

B 0

] [
∆x
∆λ

]
=

[
r1
r2

]
,(3.3)

where

C := S + Y −1
i Wi + Z−1

i Vi(3.4)

is iteration dependent and r1 and r2 are the appropriate right-hand sides. The right-
hand sides are the only values that change between the predictor and corrector step.
See [11] for further information on the calculation of the right-hand sides and diagonal
modification.

For the remainder of this section, we look at the linear algebra necessary to
calculate the direction at each iteration. We initially develop the case where S is
positive definite and we have only simple bounds. We then discuss the modification
made for arbitrary linear constraints. We finish with the most general case, where S
is not assumed to be positive definite.

3.1. Simple bound-constrained case. We first describe the method in the
simplest context, that of the SVM formulation in (2.10). In this case, S = 1

ν I is
positive definite, R = D

[
A −e ]

, H = I, and B is not present. The linear system
(3.3) reduces to

(C +RHRT )∆x = r1.(3.5)

While the matrices R and H are constant over iterations, the matrix C in (3.4) and
r1 are iteration dependent.

The matrix in (3.5) is a rank-k update to an easily invertible matrix. Therefore,
we can use the Sherman–Morrison–Woodbury [13] formula

(C +RHRT )−1 = C−1 − C−1R(H−1 +RTC−1R)−1RTC−1

to solve for ∆x. It is trivial to form C−1 and H−1 because they are both positive
definite diagonal matrices. The matrix H−1 +RTC−1R is a (small) symmetric k× k
matrix that, once formed, can be handled by standard dense linear algebra subrou-
tines. Since this matrix is independent of r1, we have to form and factor this small
dense matrix only once per iteration. That is, we can use the same factors in both
the predictor and the corrector steps. To summarize, to solve (3.5), we carry out the
following steps.

Algorithm SMW.
1. Calculate t1 = RTC−1r1.
2. Solve (H−1 +RTC−1R)t2 = t1.
3. Determine ∆x = C−1(r1 −Rt2).
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Note that t1 and t2 are small k-vectors. Furthermore, the calculation in step 1 can
be carried out at the same time the matrix required in step 2 is being formed. Thus,
a complete solve requires two passes through the data stored as R, namely, one for
steps 1 and 2 and one for step 3. This feature is important for the out of core
implementation discussed in section 4.

3.2. Constrained case. We now turn to the case where the quadratic program
under consideration still has a positive definite Q matrix but the problem has a small
number of linear constraints. For example, problem (2.11) falls into this class, where
S = 1

ν I is positive definite, R = DA, H = I, and B = eTD. Note that B is a nonzero,
1×m matrix with full row rank.

The predictor-corrector method requires the solution of (3.3) at each iteration.
We have already shown how to apply (C + RHRT )−1 using Algorithm SMW. We
use this observation to eliminate ∆x = (C + RHRT )−1(r1 + BT∆λ) from (3.3) and
generate the following system in ∆λ:

B(C +RHRT )−1BT∆λ = r2 −B(C +RHRT )−1r1.(3.6)

Since B has full row rank and C +RHRT is symmetric positive definite, we conclude
that B(C+RHRT )−1BT is symmetric and positive definite. Hence, it is nonsingular,
and the linear system (3.6) is solvable for any r1 and r2.

To use (3.6), we must solve the system

(C +RHRT )
[
T1 t2

]
=

[
BT r1

]

with multiple right-hand sides corresponding to the columns of BT and r1. However,
we never need to form or factor (C + RHRT ) explicitly, since we can solve for all
the right-hand sides simultaneously using Algorithm SMW, incurring the cost only of
storing T1, an m× n matrix, and t2. Note that in our SVM examples, n = 1.

Let us review the steps needed to solve (3.3).
1. Form T1 = (C + RHRT )−1BT and t2 = (C + RHRT )−1r1 using a simulta-

neous application of Algorithm SMW.
2. Calculate t3 = r2 −Bt2 using the solution from step 1.
3. Form the n× n matrix T2 = BT1.
4. Solve T2∆λ = t3, for the solution of (3.6).
5. Calculate ∆x = t2 + T1∆λ.

Steps 2 and 3 can be done concurrently with step 1. Specifically, we can accumulate
T2 and t3 as the elements in T1 and t2 become available from step 3 of Algorithm
SMW. Per iteration, this scheme requires only two passes through the data in R, all
in step 1, and one pass through T1 in step 5.

Furthermore, since the predictor-corrector method requires two solves of the form
(3.3) per iteration with different r1 and r2, the extra storage used for T1 means that
we need to calculate T1 only once per iteration. For efficiency, we reuse the factors of
C + RHRT in step 2 of Algorithm SMW and T2 in step 4 of the above algorithm in
both the predictor and corrector steps of the interior-point algorithm.

3.3. General case. Unfortunately, this is not the end of the story because for-
mulations (2.8) and (2.9) do not have a positive definite matrix S but instead use
S = 0. In fact, these problems also have lower and upper bounds. In this setting,
while the matrix C = Y −1W + Z−1V (for appropriately defined W , V , Y , and Z)
is positive definite on the interior of the box defined by the bound constraints, the
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interior-point method typically runs into numerical difficulties when the solution ap-
proaches the boundary of the box constraints.

Algorithmically, we would like the optimization problem to have a positive definite
S matrix. When S is already positive definite, no modifications are needed in (2.1).
For example, (2.10) and (2.11) have positive definite Q matrices and are strongly
convex quadratic programs.

However, when S is only positive semidefinite (or zero), we can use a proximal-
point modification [25]. Proximal-point algorithms augment the objective function
with a strongly convex quadratic term and repeatedly solve the resulting quadratic
program until convergence is achieved. That is, given xi, they solve the quadratic
program

minx
1
2x

TQx+ cTx+ η
2 ‖x− xi‖2

2

subject to Bx = b,
x ≥ 0

(3.7)

for some η > 0, possibly iteration dependent, to find a new xi+1. The algorithm
repeatedly solves subproblems of the form (3.7) until convergence occurs. Properties
of such algorithms are developed in [25, 7], where it is shown that if the original
problem has a solution, then the proximal-point algorithm converges to a particular
element in the solution set of the original problem. Furthermore, each of the quadratic
subproblems is strongly convex.

This approach may be used to solve (2.8) and (2.9), for example. However,
rather than solving each subproblem (3.7) exactly, we instead solve the subproblems
inexactly by applying just one step of the interior-point method before updating the
subproblem. Thus, in effect, we are solving at each iteration the system of equations

[
C +RHRT + ηI −BT

B 0

] [
∆x
∆λ

]
=

[
r1
r2

]
.

Therefore, when using the proximal-point perturbation algorithm, we use the same
interior-point implementation and simply modify the C matrix.

Since a proximal-point perturbation can cause the algorithm to take many itera-
tions, our code initiates the proximal-point perturbation algorithm only when numer-
ical difficulties are encountered. We identify numerical difficulties with an increase in
the error for satisfying the equations. This technique switches to the proximal-point
algorithm when necessary.

The linear algebra issues are now the same as the issues already covered above
except for the particular values present in S. The remaining challenge is to solve
massive problems. The implementation is discussed in the next section, where we use
an out of core computation to reduce memory requirements.

4. Implementation. An interesting feature of the SVM problem is the vol-
ume of data, which can lead to quadratic programs with between 10 and 100 million
variables and a Q matrix that would be dense if formed explicitly. Quadratic pro-
gramming codes explicitly using the Q matrix will not work well for these problems.
We need a method for which we can utilize specialized linear algebra. Therefore, we
use the Mehrotra predictor-corrector algorithm [23] as implemented in OOQP [11] as
the basis for our interior-point method. The OOQP code is written in such a way
that we can easily tailor the linear algebra to the application. This feature can be
exploited to enable the solution of large data mining problems.
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The linear algebra outlined in section 3 is used in our implementation. As men-
tioned in section 3, we simultaneously solve systems of equations involving different
right-hand side vectors and also reuse appropriate vectors and matrices for the pre-
dictor and corrector steps. However, because of the target size, we must effectively
deal with the volume of data. Potentially, round-off or accumulation errors could
become significant, so we want to minimize these as much as possible. Finally, we
want to use a termination condition independent of the problem size. These topics
are discussed in the following subsections along with further information on selecting
a starting point. Clearly, the fact that interior-point algorithms typically require only
a small number of iterations is crucial for performance.

The scaling of the problem can affect the behavior of the numerical linear algebra
used to calculate the solution. For example, we experimented with the substitution
x̃ = x

ν in (2.8) when ν > 1. This helped to some extent when the standard OOQP
starting point was used, but was not necessary with the special starting point de-
scribed next.

4.1. Starting point. The starting point chosen for the method can significantly
impact both the theoretical and practical performance of the algorithm. To achieve
flexibility in the starting-point choice, we use the augmented system in (3.2) that has
removed the bounds on x.

We know that the majority of the variables are zero at a solution to the SVM
problem because the zero variables correspond to those observations correctly classi-
fied. Therefore, the starting point uses x0 = 0 and λ0 = 0. We choose w0 and v0 so
that w0 − v0 = c. That is, the residual in the first equation of (3.2) at the starting
point is zero. Since c = −e for the SVM, we set w0 = (ν + 1)e and v0 = (ν + 2)e.
We are then left with a choice for the slack variables, y0 and z0, added to the aug-
mented system for w and v. To retain parity with our choice for w0 and v0, we set
y0 = (ν +2)e and z0 = (ν +1)e. We use the same starting point for the formulations
without upper bounds but note that v and z are removed from the problem.

Better numerical performance might be achieved by the algorithm with an alter-
native starting point. For example, we expect that at a solution, most elements of y
will be zero and most elements of z will be ν. This fact is not reflected in the current
choice of y0. We did not perform any further investigation of this topic.

4.2. Data issues. Consider a model with 50 million observations and suppose
there are 35 features, each represented by a 1-byte quantity. Then, the observation
matrix R is 50, 000, 000×35 and consumes 1.75 gigabytes of storage. If the features are
measured as double-precision values, the storage requirement balloons to 14 gigabytes.
Furthermore, the quadratic program has 50 million variables. Therefore, each double-
precision vector requires 400 megabytes of space. If we assume 10 vectors are used,
an additional 4 gigabytes of storage is necessary. Thus, the total space requirement
for the algorithm on a problem of this magnitude is between 5.75 and 18 gigabytes.
Clearly, an in core solution is not possible on today’s machines.

We must attempt to perform most, if not all, of the operations using data kept
out of core, while still achieving adequate performance. All of the linear algebra
discussed in section 3 accesses the data sequentially. Therefore, while working on one
buffer (block) of data, we can be reading the next from disk. The main computational
component is constructing the matrix M = H−1 +RTC−1R (see step 2 of Algorithm
SMW). We begin by splitting R and C−1 into p buffers of data and calculate

M = H−1 +

p∑
j=1

RT
j (C

−1)jRj .



INTERIOR-POINT METHODS FOR SVM 793

Note that C is a diagonal matrix in the examples considered but that more general
matrices can be handled with more sophisticated splitting techniques.

To summarize, we perform the following steps to calculate M .
1. Request R1 and (C−1)1 from disk, and set M = H−1.
2. For j = 1 to p− 1 do

(a) Wait for Rj and C−1
j to finish loading.

(b) Request Rj+1 and C−1
j+1 from disk.

(c) Accumulate M = M +RT
j (C

−1)jRj .

3. Wait for Rp and C−1
p to finish loading.

4. Accumulate M = M +RT
p (C

−1)pRp.
The code uses asynchronous I/O constructs to provide the request and wait function-
ality. The remainder of the linear algebra in section 3 can be calculated similarly.
The code performs as many of the required steps as possible concurrently with the
reading of the Rj buffers from disk.

The amount of data kept in core is significantly reduced with such a scheme. The
tradeoff is that the code is not as fast as an in core implementation. In section 5, we
quantify the impact of the out of core calculation.

4.3. Numerical considerations. Because of the number of variables in the
problems solved, we can run into significant round-off errors while performing the
linear algebra, particularly when accumulating the matrices. A naive implementation
of Algorithm SMW that does nothing to address these problems results in diver-
gence of the interior-point method for a moderately sized problem with one million
observations. In an attempt to limit the effect of these numerical errors, we use a
combination of aggregation to identify a block and bucketing within the block for the
computations.

4.3.1. Aggregation. Consider the construction of the matrix H−1 +RTC−1R
using the above technique. The aggregation technique accumulates the RT

j (C
−1)jRj

components in temporary matrices, Ml for l = 1, . . . , L, and then merges these as
M =

∑L
l=1 Ml. Specifically, the initialization and accumulation steps are updated

from the algorithm above into the following final form.
1. Request R1 and (C−1)1 from disk, and set M1 = H−1 and Ml = 0 for

l = 2, . . . , L.
2. For j = 1 to p− 1 do

(a) Wait for Rj and C−1
j to finish loading.

(b) Request Rj+1 and C−1
j+1 from disk.

(c) Accumulate M(j mod L)+1 = M(j mod L)+1 +RT
j (C

−1)jRj .

3. Wait for Rp and C−1
p to finish loading.

4. Accumulate M(p mod L)+1 = M(p mod L)+1 +RT
p (C

−1)pRp.

5. Merge M =
∑L

l=1 Ml.
Our merge is implemented by repeatedly adding the L

2 neighbors as depicted in Fig-
ure 4.1 (termed pairwise summation in [15]). A similar procedure is used for the
vector computations. The code uses L = 8 for the calculations. We note that the
above algorithm is dependent on the buffer size read from disk. This dependency is
removed in the code by further partitioning Rj and C−1

j into smaller buffers with
50,000 elements. This is a heuristic to limit the size of the intermediate summation
values without having to perform an expensive sorting operation.
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Fig. 4.1. Accumulation diagram.

4.3.2. Bucketing. While aggregation accumulates small batches of results, the
bucketing strategy accumulates results of the same order of magnitude. The code
uses 11 buckets with the ranges listed in Table 4.1. Whenever a result needs to be
accumulated, it is assigned to the appropriate bucket. At the end of the computation,
the buckets are merged. We decided to add first the positive and negative buckets of
the same magnitude, and then accumulate the buckets starting with the smallest in
magnitude. Again, this is a heuristic that does not require a sort of the data being
accumulated. For summations involving numbers of the same sign, the accumulation
from smallest to largest is as recommended in [29]. The addition of the positive and
negative buckets of the same magnitude is designed to alleviate cancellation effects.

An example is given in [15] to test the effects of ordering on summations. The
example has a large value M such that in floating-point arithmetic 1+M ≡ M , with
the requirement that the values 1, 2, 3, 4,M,−M should be summed. Our bucketing
and summation scheme results in the following summation:

(((1 + 2) + 3) + 4) + (M −M).

Furthermore, the correct result is calculated independent of the initial ordering of the
values, and no sort is required. Further details on other orderings and examples can
be found in [15].

Since some of our calculations have mixed signs and some involve just positive
numbers, the combination of heuristics, aggregation to identify a block and bucketing
within each block, was found to be very effective.

Table 4.1
Bucket ranges.

Range
Bucket Lower bound Upper bound
1 −∞ −108
2 −108 −104
3 −104 −1
4 −1 −10−4

5 −10−4 −10−8

6 −10−8 10−8

7 10−8 10−4

8 10−4 1
9 1 104

10 104 108

11 108 ∞
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4.4. Termination criteria. The termination criterion is based on the inf-norm
of the Fischer–Burmeister function [9] for the complementarity problem (3.1), with an
appropriate modification for the presence of equations [8]. If we denote all variables
in (3.1) by x and the affine function on the left of (3.1) by F (x), then each component
of the Fischer–Burmeister function is defined by

φ(xi, Fi(x)) :=
√
x2
i + Fi(x)2 − xi − Fi(x)

for those variables with lower bounds of zero and by φ(xi, Fi(x)) = −Fi(x) for vari-
ables without bounds. We can see from this definition that φ(xi, Fi(x)) = 0 if and
only if the complementarity relationship is satisfied between xi and Fi(x). The inf-
norm is independent of the number of variables in the problem and can be stably
calculated given evaluations of the linear functions in (3.1). We further note that
the function F can be evaluated during the calculation of the right-hand side in the
predictor step. Therefore, the function calculation does not cost an additional pass
through the data. We use a termination criterion of 10−6 for the Fischer–Burmeister
function within the code, which is much more stringent than the default criterion
for OOQP. In Figure 4.2 we plot the (log) residual as a function of the iteration for
problem (2.8) with 10 million observations.

We terminate unsuccessfully whenever the iteration limit is reached or we fail to
achieve a decrease in the residual for satisfying the equations in the interior-point
method for six consecutive iterations and the complementarity residual (wT y + vT z)

is less than 10−15

2m .
The machine learning community sometimes terminates an algorithm based upon

conditions other than optimality, such as tuning set accuracy [20]. Similar criteria
could be used within our code, but we prefer to terminate at an optimal solution to
the quadratic program.
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Fig. 4.2. Log residual as a function of iterations for problem (2.8) with 10 million observations.
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5. Computational results. All of the tests were run on a 296 MHz Sun Ul-
trasparc with two processors and 768 megabytes of RAM. We stored all data on a
locally mounted disk with 18 gigabytes of storage space available. This disk is not
backed up. This setup prevents all overhead due to network communication and disk
contention with nightly backups. Since the disk is not dedicated, our results reflect
some effects due to contention with other users.

The asynchronous I/O routines are implemented using threads. Thus, both of
the processors can be used for the tests. However, the workstation is shared by many
individuals. During our tests the second processor was typically running a different
user’s jobs. Further results on a uniprocessor machine indicate that the impact of the
second processor is minimal.

5.1. Data sets. For experimentation, we generated a separable, random data
set with 34 features. We did this by constructing a separating hyperplane and then
creating data points and classifying them with the hyperplane. The data generated
contains 60 million observations of 34 features, where each feature has an integer value
between 1 and 10. Multiplication by D was performed while the data was generated,
with De being encoded as an additional column to the observation set. Each of the
feature measurements is a 1-byte quantity. A nonseparable dataset was constructed
by randomly changing the classification of the observations with a 1% probability.
The nonseparable dataset has exactly 600,108 misclassified observations.

We limited the size to 60 million observations to avoid problems with the 2-
gigabyte file size restriction imposed by various operating systems. To increase the
size further without changing operating system, we could store the original data in
multiple files.

5.2. Out of core impact. The impact on performance of using an out of core
implementation was tested by using the formulation in (2.10) with ν = 1 on the sepa-
rable dataset. Since S is positive definite in this case, no proximal-point modification
was added.

The first property investigated was the effect of out of core computations on per-
formance using asynchronous I/O. To test the performance, we ran problems for sizes
varying between 200,000 and 1 million observations. A data buffer size of 100,000
observations (elements) for each matrix (vector) was used for the out of core com-
putations. We ran each of the tests five times and used the minimum values in the
figures. The average time per iteration is reported in Figure 5.1 for in core, asyn-
chronous I/O, and synchronous I/O implementations. While the asynchronous I/O is
not as fast as keeping everything in core, we note only an 8.2–9.9% increase in time
over the in core implementation for the chosen buffer and problem sizes. Synchronous
I/O results in a 9.4–13.1% increase. For both of these tests the maximum percentage
increase in time occurred with a problem size of 800,000 elements. We conclude that
an out of core implementation of the algorithm uses limited memory but results in
increased time. We believe that the enormous decrease in the amount of RAM used
for a less than 10% increase in time is a reasonable tradeoff to make. A case can also
be made for using the easier to implement synchronous I/O.

The next set of experiments was designed to determine the impact of modifying
the file buffer size. For these tests, we fixed the problem size to 1 million observations
and varied the file buffer size from 50,000 to 500,000 elements. The average time per
iteration is plotted in Figure 5.2. The results indicate that a file buffer size of around
250,000 elements is optimal with a 9.0% increase in time over the in core solution.
The total amount of data buffered in main memory is between 110 and 152 megabytes
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Fig. 5.1. Average time per iteration for various problem sizes with a fixed file buffer size of
100,000 elements.

depending on the problem formulation used. Based on these results, we decided to
use asynchronous I/O and a buffer size of 250,000 elements for the remainder of the
numerical experiments.

5.3. Baseline comparison. We next investigated the performance of our interior-
point algorithm compared with other methods from the machine learning community.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

70.5

71

71.5

72

72.5

Buffer Size in Hundred Thousand Observations

A
ve

ra
ge

 T
im

e 
pe

r 
Ite

ra
tio

n 
(in

 S
ec

on
ds

)

Fig. 5.2. Average time per iteration for various file buffer sizes with a fixed problem size of
1,000,000 observations.
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Fig. 5.3. Total time comparison of the different formulations and SVMTorch with varying
problem sizes on the separable dataset.

We used SVMTorch [4] for this series of tests because the code is freely available and,
according to the documentation, is specifically tailored for large-scale problems. We
compiled both codes with the same compiler and options and converted the datasets
into the binary format requested by SVMTorch. We ran SVMTorch using a linear
kernel with ν = 1. All other options, including the termination tolerance, were set to
their default values.

Figure 5.3 reports the total running time for SVMTorch and each of (2.8)–(2.11)
on the separable dataset with various numbers of observations. From these results,
SVMTorch is 1.6–6.1 times slower than our codes on the separable dataset depending
on the size and formulation chosen.

Results on the nonseparable dataset are more dramatic. SVMTorch took 1156.3
seconds to find a solution with 10,000 observations. Our interior-point codes took 5.8,
5.8, 8.6, and 9.8 seconds with formulations (2.8)–(2.11), respectively. These numbers
indicate that SVMTorch is between 116 and 196 times slower on the nonseparable
dataset. The magnitude becomes even larger when the number of observations is
increased. With 50,000 observations, we let SVMTorch spend over 15 hours of CPU
time in 380,000 iterations before terminating the SVMTorch code with a “current
error” of 2.15. These numbers indicate that the SVMTorch code is at best more than
1,060 times slower than our interior-point code on this particular dataset. We did not
perform any further tests with this code.

5.4. Sensitivity to ν. The next set of experiments was to determine the sensi-
tivity of the method to increases in ν. In all of these tests, a proximal-perturbation
of η = 10−5 was added for the models in (2.8) and (2.9) when the error in solving
the equations increased. We report in Figures 5.4 and 5.5 the number of iterations
taken by the interior-point methods for various values of ν between 1 and 10,000 on
the separable and nonseparable datasets with 1 million observations, respectively. On
the separable dataset we notice increases in the number of iterations taken to find a
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Fig. 5.4. Iteration comparison of the different formulations with varying ν on the separable
dataset.

solutions. The iteration counts taken on the nonseparable dataset also increase. For
(2.8) and (2.9), a small percentage of the variables at the solution were at the upper
bound for all values of ν in both the separable and nonseparable tests. We note that
on the nonseparable dataset for ν = 1, 000 and ν = 10, 000, all of the formulations
failed to achieve termination tolerances; they stopped with final and best residuals
reported in Table 5.1. Further improvements to the linear algebra implementation
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Table 5.1
Final and best residuals reported for the different formulations with ν = 1, 000 and ν = 10, 000

on the nonseparable dataset.

ν = 1, 000 ν = 10, 000
Formulation Final Best Final Best
(2.8) 2.12e-6 1.38e-6 2.78e-5 1.71e-5
(2.9) 2.65e-6 1.36e-6 1.84e-5 1.04e-5
(2.10) 5.73e-6 3.76e-6 6.87e-5 3.50e-5
(2.11) 8.57e-6 3.93e-6 3.73e-5 2.60e-5

would need to be investigated in order to produce reasonable results for larger values
of ν.

5.5. Massive problems. The final set of experiments was designed to determine
the reliability of the algorithm on the various formulations and the scalability of the
implementation to massive problems. Specifically, we varied the problem size between
1 and 60 million observations. In all of these tests ν = 1 was used, and for the models
in (2.8) and (2.9) a proximal-perturbation of η = 10−5 was added when the error in
solving (3.3) increased.

Each model was run one time with problem sizes of 1, 5, 10, 20, and 60 million
observations. We plot average time per iteration in Figure 5.6 and number of iterations
as functions of problem size in Figures 5.7 and 5.8, respectively. The similarity in the
average time per iteration between formulations (2.10) and (2.11) (and also between
(2.8) and (2.9)) is indistinguishable. To avoid clutter, we plot the results only for
(2.8) and (2.11) in Figure 5.6. The total times are reported in Figures 5.9 and 5.10.

The average time per iteration appears to grow almost linearly with the problem
size. This result is to be expected, as the majority of the time taken per iteration is
in constructing H−1 + RTC−1R. The number of floating-point operations necessary
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problem size.
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Fig. 5.7. Iteration comparison of the different formulations with varying problem size on the
separable dataset.

to calculate this quantity grows linearly with problem size m (but quadratically with
the number of features k). The extra time needed for (2.8) is due to the treatment of
upper bounds.

A surprising result for the constrained formulations, (2.8) and (2.11), on the
separable dataset is that the number of iterations remains fairly flat as the problem
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nonseparable dataset.
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Fig. 5.9. Total time comparison of the different formulations with varying problem size on the
separable dataset.

size increases and even decreases for some of the larger problems. As expected, the
number of iterations taken for (2.9) and (2.10) increases with the dimension of the
problem. We note a large difference in the number of iterations taken to converge for
formulations (2.8) and (2.9) even though the problems are similar. The main reason
for this difference is that many small steps are taken when solving (2.9).
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All of the formulations performed extremely well on the nonseparable dataset,
with very little variation in the number of iterations. These facts are counterintuitive
and are probably related to the random nature of the model. However, more tests on
“real” datasets need to be performed before drawing any firm conclusions.

The constrained formulations (2.8) and (2.11) appear to be the most tractable for
interior-point methods. Both of these formulations solved the 60-million observation
problem in 15–22.5 hours on a standard workstation. Formulations (2.9) and (2.10)
also work for the 60-million observation problem but take longer times.

We believe the strength of this approach is its scalability and reliability. While it
may be possible to adjust the parameters of the interior-point method or the parame-
ters of the proximal-point iteration for improved performance, we have elected to use
the same defaults on all problems and have not encountered any numerical difficulties
beyond those documented in section 5.4.

6. Conclusions. We have developed an interior-point code for solving several
quadratic programming formulations of the linear SVM. We are able to solve large
problems reasonably by exploiting the linear algebra and using out of core computa-
tions. Scalability of the approach has been demonstrated.

The linear algebra can be parallelized easily, and further speedups can be realized
through storage of the data across multiple disks. More sophisticated corrector imple-
mentations [14] of the interior-point code can be used to further reduce the iteration
count. These are topics for future work, along with extensions to nonlinear SVM, and
techniques to further reduce the number of data scans.
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