Games, Paths and Complementarity

CDGO 2007

Michael C. Ferris
University of Wisconsin, Computer Sciences
ferris@cs.wisc.edu

Nash Equilibria

Given a collection of players $i \in \mathcal{I}$ with decision variables $x_i \in \mathbf{R}^{n_i}$ x^* is a Nash Equilibrium if

$$x_i^* \in \arg\min_{x_i \in X_i} f_i(x_i, x_{-i}^*), \forall i \in \mathcal{I}$$

 x_{-i} are the decisions of other players.

2-person game

Player I plays i with prob p_i Player II plays j with prob q_j Player I loss matrix A_{ij} Player II loss matrix B_{ij}

$$p^* \in \arg\min_{p \in \Delta} \langle Aq^*, p \rangle$$

$$q^* \in \arg\min_{q \in \Delta} \langle B'p^*, q \rangle$$

 Δ is unit simplex

(LP) Optimality Conditions

Normal Map

projection: $\pi_C(x)$

$$x - \pi_C(x) \in N_C(\pi_C(x))$$

Suppose $-M\pi_C(x) = x - \pi_C(x)$ then

$$-M\pi_C(x) \in N_C(\pi_C(x))$$

 $z = \pi_C(x)$ solves our problem Find x, a zero of the normal map:

$$0 = M\pi_C(x) + x - \pi_C(x)$$

Normal manifold = $\{F_i + N_{F_i}\}$

$$C = \{z | Bz \ge b\}$$

$$N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$$

$$Mz + B'v$$

$$z \in F_i$$

$$v \le 0, v_{\mathcal{I}(z)} = 0$$

$$C = \{z | Bz \ge b\}$$

$$N_{C}(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$$

$$\begin{bmatrix} B'_{1}. & B'_{2}. \end{bmatrix} \begin{cases} Mz + B'v \\ z \in F_{i} \\ v \le 0, v_{\mathcal{I}(z)} = 0 \end{cases}$$

$$C = \{z | Bz \ge b\}$$

$$N_{C}(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$$

$$\begin{bmatrix} B'_{1} & M_{2} & \\ \\ B'_{1} & B'_{2} & \end{bmatrix}$$

$$\begin{bmatrix} B'_{1} & B'_{2} & \\ \\ \end{bmatrix} \begin{bmatrix} M_{1} & B'_{2} & \\ \end{bmatrix} \begin{bmatrix} B'_{3} & B'_{2} \end{bmatrix}$$

Cao/Ferris Path (Eaves)

- Start in cell that has interior (face is an extreme point)
- Move towards a zero of affine map in cell
- Update direction when hit boundary
- Solves or determines infeasible if M is copositive-plus on rec(C)
- Nails 2-person game

3-person game

Probabilities p, q, r

Loss matrices $A_{ijk}, B_{ijk}, C_{ijk}$

$$\begin{aligned} p^* &\in \arg\min_{p \in \Delta} \sum A_{ijk} p_i q_j^* r_k^* \\ q^* &\in \arg\min_{q \in \Delta} \sum B_{ijk} p_i^* q_j r_k^* \\ r^* &\in \arg\min_{r \in \Delta} \sum C_{ijk} p_i^* q_j^* r_k \end{aligned}$$

$$0 \in F(p^*, q^*, r^*) + N_{\Delta \times \Delta \times \Delta}(p^*, q^*, r^*)$$

Newton Method

- Linearize F and solve the AVI
 - Start path at previous Newton point
 - Globalize using generalized linesearch
- C = a box: essentially PATH solver MCP
 - Underlying robust theory
 - Large scale linear algebra
 - Treat singularities/ill conditioning
 - Crash methods and preprocessing
- Special case: C = positive orthant NCP
- Special case: C = whole space F(x) = 0

Simple Dynamic Games

- · Two players, infinite (discrete) time
- Prototype (Cournot) example on grid
 - (i,j) = players machines
- Investment and depreciation affects probabilities of changing state
- Variables are investment levels, quantities, prices; nonlinear F

Large scale issues

Problem			LUSOL	
n	dim	nnz	time	pct LU
20	1600	68171	0.418	77.0%
50	10000	587112	9.166	91.6%
100	40000	2773928	49.308	93.2%
Problem			UMFPACK	
n	dim	nnz	time	pct LU
20	1600	66684	0.218	56.4%
50	10000	658755	2.268	66.3%
100	40000	2778235	11.520	73.2%

Sparsity pattern

Jacobian

LU factors of Jacobian

Extended NLP in GAMS

$$\min_{x \in X} f_0(x) + \theta(f_1(x), \dots, f_m(x))$$

$$\theta(u) = \sup_{y \in Y} \{y'u - k(y)\}$$

$$\mathcal{L}(x,y) = f_0(x) + \sum_{i=1}^m y_i f_i(x) - k(y)$$

$$x \in X, y \in Y$$

MCP formulation (FOC)

Extensions:

```
model enlp / PARTIAL(L,x).x, PARTIAL(-L,y).y /; Extend X and Y beyond simple bounds
```

Other applications

- Option pricing (electricity market)
- · Contact problems (with friction)
- · Free boundary problems
- · Optimal control (ELQP)
- · Electronics, internet design
- Structure design
- · Dynamic traffic assignment

Chemical Phase Equilibrium

$$f(\alpha) = \sum_{i} y_{i} - x_{i}$$

$$y_{i} = K_{i}x_{i}, \ x_{i} = \frac{z_{i}}{K_{i}\alpha + 1 - \alpha}$$

$$Vapor : f(\alpha) \ge 0, \ \alpha = 1$$

$$TwoPhase : f(\alpha) = 0, \ 0 \le \alpha \le 1$$

$$Liquid : f(\alpha) \le 0, \ \alpha = 0$$

$$f(\alpha) \in N_{[0,1]}(\alpha)$$

Definition of MPEC (MPCC)

min
$$f(x,y)$$

s.t. $g(x,y) \le 0$

Add parameterization to definition of F; parameter y

$$0 \in F(x,y) + N_{\mathbf{R}^n_+}(x)$$

Theory hard; no constraint qualification, specify in AMPL/GAMS

MPEC approaches

- Implicit:
- Auxiliary variables:
- NCP functions:
- Smoothing:
- Penalization:
- Relaxation:

- min f(x(y),y)
- s = F(x,y)
- $\Phi(s,x)=0$
- $\Phi_{\mu}(s,x)=0$
- min $f(x,y) + \mu \{s'x\}$
- s'x <= μ
- Different problem classes require different solution techniques

Parametric algorithm NLPEC

- Reftype mult
- · Aggregate none
- · Constraint inequa
- Initmu = 0.01
- Numsolves = 5
- Updatefac = 0.1
- Finalmu = 0

Reformulate problem and set up sequence of solves

$$NLP(\mu)$$
: min $f(x,y)$

$$g(x,y) \leq 0$$

$$s = F(x, y)$$

$$x, s \geq 0$$

$$s_i x_i \leq \mu, \ \forall i$$

Grid Computing for MCP

- Uses dedicated clusters and cycles from desktop workstations (> 1000 machines available for "ferris")
- Heterogeneous machines, with or without shared file system
- Machines updated regularly
- Condor is fault tolerant
- GAMS/Grid: available for download today
 - enlp.solvelink = 3

Use for grid computation

- Global Optimization
- Enhance speed (or size) of computation model
 - Linear algebra
 - May not have LU exploitable structure
 - Decomposition approaches
 - · Benders, Dantzig-Wolfe, Lagrangian Duality
 - · Jacobi, Gauss-Seidel

Trade/Policy Model (MCP)

Split model (18,000 vars) via region

- · Gauss-Seidel, Jacobi, Asynchronous
- · 87 regional subprobs, 592 solves

Model knowledge decomposition

- Pink model open economy (regions)
- Green model (partial) spatial
 equilibrium
 (commodities)
- Links are imports and exports

Calibrate supply and demand functions to points, and communicate functional forms, not points

Deviations by iteration

Output weighted deviation

Future Challenges

- MPEC/EPEC
 - theory and computation
- All solutions
 - Structure failure, Nash equilibria
- Large scale iterative solvers
 - Factors not available in RAM
- Complementarity Systems / Projected dynamical systems
- New application areas