
GAMS, Condor and the Grid:
Solving Hard Optimization

Models in Parallel
Michael C. Ferris

University of Wisconsin
Michael Bussieck, GAMS Corp.

What is Grid Computing?
A pool of connected computers managed and

available as a common computing resource

• Effective sharing of CPU power

• Massive parallel task execution

• Scheduler handles management tasks

• E.g. Condor, Sun N6 Grid Engine, Globus

• Can be rented or distributively owned

• Licensing, communication and security issues

Condor Features
• Uses dedicated clusters and cycles from

desktop workstations (> 1000 machines
available for “ferris”)

• Heterogeneous machines, with or without
shared file system

• Machines updated regularly
• Fault tolerance

– Jobs submitted are eventually executed
• Available for download, configurable

Can we use it effectively?

• High throughput not high
performance computing (modify
perspective)

• New modeling features of GAMS
facilitate use of grid computation and
sophisticated solvers

• Optimization expertise shared with
computational engines

Typical Application for
GAMS

demand = 42; cost = 14;demand = 42; cost = 14;
solve solve mymodelmymodel min min objobj using using minlpminlp;;
report = report = var.lvar.l;;

Typical Application for
GAMS

loop(scenarioloop(scenario,,
demand=demand=sdemand(scenariosdemand(scenario); cost=); cost=scost(scenarioscost(scenario););
solve solve mymodelmymodel min min objobj using using minlpminlp;;
report(scenarioreport(scenario)=)=var.lvar.l

););
report(scenarioreport(scenario) =) = var.lvar.l););

Typical Application for
GAMS & Grid

mymodel.solvelinkmymodel.solvelink=3;=3;
loop(scenarioloop(scenario,,
demand=demand=sdemand(scenariosdemand(scenario); cost=); cost=scost(scenarioscost(scenario););
solve solve mymodelmymodel min min objobj using using minlpminlp;;
h(scenarioh(scenario)=)=mymodel.handlemymodel.handle););

repeatrepeat
loop(scenario$h(scenarioloop(scenario$h(scenario),),
if(handlestatus(h(scenarioif(handlestatus(h(scenario)),)),
mymodel.handlemymodel.handle==h(scenarioh(scenario);); h(scenarioh(scenario)=0;)=0;
execute_loadhandleexecute_loadhandle mymodelmymodel;;
report(scenarioreport(scenario)=)=var.lvar.l););

if(card(hif(card(h), execute 'sleep 1');), execute 'sleep 1');
until until card(hcard(h)=0 or)=0 or timeelapsedtimeelapsed > 100;> 100;

Multiple Solvers/Platforms

• Can use all supported solvers
including:
– CPLEX, XPRESS, PATH, SNOPT, MOSEK

• Runs on multiple platforms using
heterogeneous machines for solvers

• Can interleave solutions on host and
worker, maintains data confidentiality

• Available right now!

Feature Selection
• Select best features for classification
• Evaluate with 10-fold cross validation
• Perform validation multiple times

– Reduce variance
– Obtain better estimate

• Each validation creates 10 jobs
• Perform 20 concurrent validations

– Generates 200 independent problems
– Each problem is an integer program

Radiotherapy Treatment
Fire from multiple
angles

Superposition allows
high dose in target, low
elsewhere

Beam shaping via
collimator

Other enhancements

Sampling allows good
angles to be
determined quickly
and in parallel

Massively Parallel MIP
• MIP/B&C Algorithm ideal to parallelize

– Master/Worker Paradigm (process nodes in
parallel)

• Software: FATCOP/Condor, BCP/PVM, PICO/MPI
– A-priori subdivision into n independent

problems
• Seymour problem solved that way

– Open Pit Mining (openpit in GAMS Model
library)

• Partition integer variables to subdivide model into
4096 sub-problems

4096 MIPS on Condor Grid

• Submission started Jan 11, 16:40
• All jobs submitted by Jan 11, 23:00
• All jobs returned by Jan 12, 12:40

– 20 hours wall time, 5000 CPU hours, Peak # CPU’s: 500

MIPLIB 2003 had 13
unsolved instances

Nodes Best Cuts/Nodes Best Cuts/
Node Left Objective Node Left Objective IInfIInf Integer Best Node Integer Best Node ItCntItCnt GapGap

0 0 29.6862 64 29.6862 1650 0 29.6862 64 29.6862 165
100 37 17.0000 14 25.0000 2230100 37 17.0000 14 25.0000 2230
200 70 21.8429 22 24.0000 4022200 70 21.8429 22 24.0000 4022

• GAMS/CPLEX Option dumptreedumptree nn creates n bound files

Problem with a-priori partitioning
• 99% of sub-problems very easy to solve
• 1% (almost) as difficult as the original problem

• How can we find n sub-problems with similar (but
reduced) level of difficulty?
– B&C Code keeps a list of open/unexplored nodes
– Problem-bounds of these open nodes represent

partitioning of the original problem

How difficult is a
subproblem?

• What is a good
estimate for how
difficult a
subproblem is?
– Look at the LP value
of a subproblem

– The smaller the LP
value (assuming
minimization)
the more difficult the
subproblem

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 500 1000 1500 2000 2500

• Cplex Default

• Cplex Strong Branching

• Spend more time in sub-
problem generation

Putting it all together
Generate Generate nn subsub--problems using GAMS/CPLEX with problems using GAMS/CPLEX with dumpoptdumpopt n;n;

loop(loop(nn,,
load load nnth bound file;th bound file;
generate and submit generate and submit nnth subth sub--problemproblem

););

RepeatRepeat
loop(loop(nn$(not$(not collected),collected),

if (if (n n finished, finished,
load load nnthth--solution and mark solution and mark nn as collected));as collected));

sleep some time;sleep some time;
Until all collected;Until all collected;

Communication
• Incumbent solution allows pruning of nodes with

larger LP solution value
– How greedy are you?
– Shared file system (unreliable, unavailable)
– condor_chirp for inter-worker communication

(background process on worker)
• Hence communicate newly found incumbent to all

subproblems
– Subproblems not started: Start with cutoffcutoff
– Running subproblems: Update cutoff cutoff with a

GAMS/CPLEX option file that is read while running
(solver option facilitates on-the-fly strategy changes)

Strategy

• Strategy:
– Have one machine working on good

solutions for original problem
• CPLEX mipemphasismipemphasis 1 1 or 44

– Subproblem emphasis on best-bound
• CPLEX mipemphasismipemphasis 33

– Repartition longest running jobs
– Restart from incumbent (cf NLP)

Grid resources used

main submitting
machine died, jobs
not lost

Partitioned into 1000 subproblems, over
300 machines running for multiple days

Some results
ROLL3000ROLL3000 A1C1S1A1C1S1 TIMTAB2 (added TIMTAB2 (added

problem cuts)problem cuts)
#sub#sub--problemsproblems 986986 10891089 33203320

objectiveobjective 1289012890 11503.411503.4 1096557.1096557.

##CplexCplex B&B nodesB&B nodes 400,034400,034 1,921,7361,921,736 17,092,21517,092,215

CPU time usedCPU time used 50h50h 3452h3452h 2384h2384h

CPU time wastedCPU time wasted 0.5h0.5h 248h248h 361h361h

Wall timeWall time Over nightOver night Over nightOver night Over nightOver night

Other Results
• Problem SWATH (TSP type problem)

+ sub-tour elimination cuts:

• Subproblems: 1539 (23 not finished)
• Objective: 467.407
• CPU time used: 36159 hr (4.1 years)
• CPU time wasted: 71557 hr (8.2 years!)
• Nodes explored: 721,718,141

• Second Level Partitioning (subdivide of several of the 23 outstanding
problems):

Subproblems: 2000
CPU time used: 2,232 hr
CPU time wasted: 24,000 hr
Nodes explored: 464,006,423

A word of caution

• Go back to original SWATH paper!
• Understand underlying (20 var) TSP

with “supernodes”
• 5 rounds of subtour elimination cuts,

32 extra constraints in all
• Problem solved in less than 20

minutes on a single machine using
CoinCbc!

Scheduling Multistage Batch Plants

• Solution within 1 day
• Three level decision process (GAMS)

– Split order into batches
– Assign batches to processing units
– Sequence batches over stages

• Instance 1: solved sequentially CPLEX
• Instance 2: solved GAMS/CPLEX/Condor
• Instance 3: gap (1176-1185) after 24h

Adaptive SB Method
• Split model using “domain expertise” at top levels

– 234 jobs, fixes batches and some assignments
• Apply (very) strong branching to generate a

collection of subproblems
• Solve each subproblem

– If 2 hour time limit reached, reapply strong branching to
subdivide and resolve

• Instance 3 solved (22 hours) - 4 branching levels

• (5 days,22 hrs; nodes = 58,630,425; 7356 jobs)

Summary
• GAMS/CPLEX dumpopt n

– a-priori problem partition of MIP
• Use GAMS Grid facilities, Condor, and GAMS/CPLEX to

generate, submit, and solve n subproblems
• Communication of updated incumbent is essential
• Solved two previously unsolved problems (ROLL3000,

A1C1S1) from MIPLIB2003 over night (with few hundred
machines available)

• Brute force has its limits, but with some additional problem
specific knowledge (turned into problem specific cuts) one
more problem (TIMTAB2) could be solved over night

• Problem knowledge still very useful, solved (SWATH)
• Some problems in MIPLIB2003 will remain unsolved for a

while

Conclusions
• Massive parallel and distributed computing

environments are available (e.g. Condor,
IBM, SUN)

• Grid computing capability available for
optimizers in convenient environment via
simple language extensions to modeling
languages

• Today's modeling languages are well suited
to experiment with coarse grain parallel
approaches for solving difficult problems

Future extensions

• “Time-constrained” problem solution
(as opposed to “real-time”)

• Re-optimization (model updating)
• Global optimization
• Commercial use
• Saving intermediate solution results
• Further application deployment

	GAMS, Condor and the Grid: Solving Hard Optimization Models in Parallel
	What is Grid Computing?
	Condor Features
	Can we use it effectively?
	Typical Application for GAMS
	Typical Application for GAMS
	Typical Application for GAMS & Grid
	Multiple Solvers/Platforms
	Feature Selection
	Radiotherapy Treatment
	Massively Parallel MIP
	4096 MIPS on Condor Grid
	MIPLIB 2003 had 13 unsolved instances
	Problem with a-priori partitioning
	How difficult is a subproblem?
	Putting it all together
	Communication
	Strategy
	Grid resources used
	Some results
	Other Results
	A word of caution
	Scheduling Multistage Batch Plants
	Adaptive SB Method
	Summary
	Conclusions
	Future extensions

