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University of Wisconsin University of Wisconsin 
Breast Cancer Simulation Model Breast Cancer Simulation Model 

Purpose –
Use detailed individual-woman level discrete 
event simulation of processes
• Breast cancer natural history
• Breast cancer detection
• Breast cancer treatment
• Non-breast cancer mortality among US women

To replicate historical breast cancer 
surveillance data, 1975-2000
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How to screen even more!How to screen even more!
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History of Breast Cancer Incidence 1975History of Breast Cancer Incidence 1975--20002000
In Situ Inc./100K pop.
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Natural HistoryNatural History
Breast cancer occult onset rate, 
proportional to background incidence 
but lagged in time.

Gompertzian growth from 2mm to 8 cm
Gamma distribution of initial growth rates
• Fit mean and variance of this distribution
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Breast Cancer DetectionBreast Cancer Detection

Screening sensitivity: probability of detection 
at screening as function of

Size of the tumor
Age of the woman (≤ 50 yr , > 50 yr)
Year in which she is being screened

Non-screen detection (“clinical surfacing”)—
annual probability as function of

Size of the tumor
Year (1975…2000)
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Mammogram Sensitivity 
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NonNon--natural history parameters natural history parameters 
taken as fixedtaken as fixed

Mammography dissemination model 
By year of simulation (1975-2000)
By age of simulated woman

Breast cancer incidence in absence of 
screening.

Age-period-cohort model incidence fixed input
Calibrate occult onset to this
Calibrate an average lag in time between onset 
and incidence.

Non-breast cancer mortality
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The ProblemThe Problem
Determine values for “free parameters”
that make simulation closely track 
observations (2): optimize
Develop a model of where “good 
parameters” are: approximate
Develop biological insight by 
understanding model of good 
parameters: inference
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Acceptance Sampling used to fit Acceptance Sampling used to fit 
model parametersmodel parameters

1. Specify simulation model as function of randomly 
sampled free parameters.

2. Compute implied 25-year incidence & mortality 
curves

3. Determine fit to observed data using acceptance 
envelopes.  

repeat this tens of thousands of times to find best 
fitting parameters (use large scale parallel 
computing to accomplish) 

Acceptance sampling also produces joint posterior 
distribution for all sampled parameters
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Acceptance EnvelopesAcceptance Envelopes
Upper and lower bound placed around SEER and WCRS stage-
specific incidence rate curves to screen for “acceptable”
model-generated curves.

Criteria for acceptance envelopes
1. Envelops SEER rates and most of WCRS (biased toward 

SEER)
2. Penalizes simulated curves not having inflections 

representing stage specific characteristics
In situ and localized stages must be increasing (no 
downturn)
Flattening of regional & distant stages over time

3. Width set to encompass 95% variation expected in rates 
given size of population simulated  
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Incidence In Situ
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Objective functionObjective function

Given one replication with fixed input parameters
count of number of points at which model output 
falls outside of envelope

“worst” score = 104
“good” score ≤ 10
“best” score = 0

Call this f(v)
Really a discrete valued rank function
Interested in “level sets” of function
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Total sampled input parameters Total sampled input parameters 
governing incidence of breast cancer:governing incidence of breast cancer:

Natural history:  10 

Sensitivity of mammography:  4-16

Annual surfacing:  2-12

…effectively something like 30 parameters
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Parameter Wide ranges Focused ranges Final value

1.  Limited Malignant 
Potential (LMP) Fraction

[0% - 55%]
(1%)

[30% - 50%]
(1%)

42%

2.  InSituBoundary [0.75 – 1.0]
(0.01)

[0.85 – 0.99]
(0.01)

0.95 cm

3.  Max LMP Size [InSitu - 1.5 cm]
(0.1)

1 cm 1 cm

4.  LMP Dwell Time [1-3]
(0.5)

[1.5-2.5]
(0.5)

2 y

5.  Onset Proportion 0.85 – 1.2
(0.01)

0.8 – 1.0
(0.01)

0.9

6.  Onset Lag [1-8]
(0.5)

[1.5-4]
(0.5)

3 y

7.  Percent 4 nodes [0 – 5%]
(1%)

[0 – 1%]
(1%)

1%

8.  Percent 5 nodes [0 – 5%]
(1%)

[2 – 4%]
(1%)

2%

9.  Mean Gamma [0.01 – 0.2]
(0.01)

[0.08 – 0.18]
(0.01)

0.12

10.  Var Gamma [0.006 – 0.1]
(0.001)

[0.01 – 0.05]
(0.001)

0.012

10 Parameters sampled10 Parameters sampled
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Feasible Point GenerationFeasible Point Generation
500,000 points (v) generated uniformly 
at random
Using CONDOR (120 machines) can 
evaluate approximately 1000 per day

f(v) involves simulation of 3 million women
363 are feasible points (in L(10))
Can we optimize?
Can we characterize these points?
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Finding Feasible PointsFinding Feasible Points

First sample from wide 
ranges on all parameters in 
the model, but holding 
LMP% ≤ 10%.   Result of 
29,000 sampled input 
parameter vectors:

Sample 43,000 vectors with 
10%<LMP%<55%:

Conclude: good solutions 
(score ≤ 10) are very rare

Conclude: rule out 
LMP%<10%
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Now constrain 
30%<LMP<50%, and
hold other parameters in 
more focused ranges 
around our best solution 
and sample 30,000 new 
parameter vectors. 

Result is mostly poor 
solutions, but 363 
parameter vectors have 
“good” scores.
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Question:  do good 
solutions occur in 
relatively compact 
regions of parameter 
space?
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Process: Pick starting input vector and sample 500 new input parameter sets in tight 
neighborhood around the starting one to see whether there is a good solution 
nearby. 

Study 2) Neighborhoods around Study 2) Neighborhoods around ““GoodGood”” and and 
““PoorPoor”” SolutionsSolutions
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Conclusion: When we start with a “bad” input parameter set and vary parameters 
around it, we cannot find a good solution.  Good solutions appear around good 
solutions, but are still rare.
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Stochastic VariationStochastic Variation
Given fixed input parameters
there is still stochastic variation
of breast cancer incidence and mortality
Each replication is 1 alternative “history”
of breast cancer incidence and mortality 
over years 1975-2000 for population 
size of Wisconsin
Score each replication
Multiple replications reduce feasible pts
Get histogram of scores



21

In Situ

0

10

20

30

40

50

60

70

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Localized

0
20
40
60
80

100
120
140
160
180

1975 1985 1995

Year

Regional

0
10
20
30
40
50
60
70
80
90

1975 1985 1995

Year

Distant

0
2
4
6
8

10
12
14
16
18

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Breast Cancer Mortality

0

10

20

30

40

50

60

1975 1985 1995

Year
score

Fr
eq

ue
nc

y

1086420

70

60

50

40

30

20

10

0

In Situ

0

10

20

30

40

50

60

70

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Localized

0
20
40
60
80

100
120
140
160
180

1975 1985 1995

Year

Regional

0
10
20
30
40
50
60
70
80
90

1975 1985 1995

Year

In Situ

0

10

20

30

40

50

60

70

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Localized

0
20
40
60
80

100
120
140
160
180

1975 1985 1995

Year

Regional

0
10
20
30
40
50
60
70
80
90

1975 1985 1995

Year

Distant

0
2
4
6
8

10
12
14
16
18

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Breast Cancer Mortality

0

10

20

30

40

50

60

1975 1985 1995

Year
score

Fr
eq

ue
nc

y

1086420

70

60

50

40

30

20

10

0

Distant

0
2
4
6
8

10
12
14
16
18

1975 1985 1995

Year

In
ci

de
nc

e 
pe

r 1
00

,0
00

Breast Cancer Mortality

0

10

20

30

40

50

60

1975 1985 1995

Year
score

Fr
eq

ue
nc

y

1086420

70

60

50

40

30

20

10

0

300 replications of best model (95% intervals)300 replications of best model (95% intervals)

Acceptance scores

0   1  2  3   4  5  6  7  8  9  10

BC mortality rate



22

ProcessProcess
Split data into training and testing set
Solve optimization problem over training set 
to generate classifier
Validate using testing set
Classifers:

SVM
kNN (nearest neighbour)
C45 (decision tree)
Boosting (multiple classifiers then vote)

Only simulate points classified as good
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ClassifierClassifier

Kernel generates nonlinear separator
Linear, Polynomial, Gaussian
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Nonlinear Support Vector MachineNonlinear Support Vector Machine

Tradeoff errors and margin
Can interpret this as columns of A’
indexing basis functions (reduced SVM)
Feature selection removes columns of 
A; can be formulated as a (non)linear
MIP
Large scale (dense) optimization
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Classifier EvaluationClassifier Evaluation
Imbalanced data; 
many more 
negative points
Accuracy is great by 
classifying all points 
as negative!
More effective to 
use TP and TN
Can generate 
classifers with blue
or red validations
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Training/Testing set refinementTraining/Testing set refinement
|TP0| = 320, |TN0| large!
One-sided sampling (Kubat, Matwin)

Generate consistent subset of TN0 (C) 
using 1NN (from random initial set)
Recursively perform “Tomek” reduction 
until |C| is suitable

Resampling with replacement
Increase size of TP0 using “score”
weighted probablilites
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Accuracy (TP/TN)Accuracy (TP/TN)
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Generation methodGeneration method
Generate 100,000 samples uniformly at 
random (potential values for v)
Use naïve cutting planes from data to 
remove very poor samples
Sequentially generate classifiers using 
one sided sampling with high estimated 
TP
Remove negative points from sample

Some positive points removed
Many more negative points removed

8640 remaining

788 remaining
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Reality checkReality check
Bad news – using “experts” values for 
remaining 20 parameters only 20% of 
these evaluate as P+
Good news – using Bayesian estimate 
with 363 “+” as a prior for remaining 20 
parameters gives 65% as P+
Experts agree that Bayes estimate 
values are good
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Results (II)Results (II)
Run one more classifier that has TP 
accuracy of .4 and TN accuracy of .9
Maybe sacrifice some “+”’s
Resulting 220 points – 195 are P+

Open research: do feature selection to 
determine which of the 30 parameters 
are the most important 
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Stochastic function valuesStochastic function values
New dataset with 10 replications at points 
with scores ≤ 30
Update classifiers to use replication data
Far fewer points in TP
Generation process results in new points (all 
are good), but 2 of which seem better than 
the “experts best solution”

Utilize derivative free optimization code or 
response surface methodology to really 
optimize



38

Surrogate optimizationSurrogate optimization
Use “Dace” toolbox to generate 
interpolant
Smoothness dependent on number of 
“training values” (2400, use max)
Use Nelder Mead simplex method, or 
nonlinear linesearch method for 
optimization of this surrogate
New point generated evaluated 300 
times
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What What objobj values for DACE?values for DACE?

Define objective as Average of max Average of mean

(trained by max of reps) 5.25 3.62

(trained by mean of reps) 5.45 3.17

(trained by max + 0.1 
mean)

5.35 3.42

(the first function is 
trained by max and the 
second is trained by mean)

5.37 3.43
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Function domain/gridFunction domain/grid
Min Max Min grid size range

onsetProp 0.8 1 0.01 0.2

meanGamma 0.1 0.18 0.01 0.08

varGamma 0.01 0.045 0.001 0.035

boundInsitu 0.85 0.99 0.01 0.14

LMPFract 0.3 0.5 0.01 0.2

aggr4Node 0 0.01 0.01 0.01

Aggr5Node 0.02 0.04 0.01 0.02

lag 1.5 4 0.5 2.5

LMPRegress 1.5 2.5 0.5 1.0



41

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Point/refinement tradeoffPoint/refinement tradeoff

2400 points

(1 refine)   1500 points   (19 refine)



42

RepresentationRepresentation
Describe feasible set:

Can generate more members of set
Set is not connected – understand 
biological significance of each piece
Does a representation of feasible set 
lead to fuller understanding of flaws in 
the simulation



43

d1
d2

unit =[d1, d2]

Feasible level set

d1
d2

unit =[d1, d2]

d1
d2

unit =[d1, d2]
d1

d2

unit =[d1, d2]
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Island qualityIsland quality
Island 1 97/98 points have values <=10

Island 2 20/49 points have scores <= 10

Island 3 97/107 points have scores <= 10

Island 4 59/69 points have scores <= 10

Island 5 59/61 points have scores <= 10
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ConclusionsConclusions
Effectively generate parameter settings 
for complex simulations
Feasible sets may form disconnected 
"islands" in parameter space indicating 
possible biological switches governing 
biological behavior of the system or 
other complex system behaviors of 
interest.
Optimization improves understanding; 
imbalanced datasets are widespread
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Key issuesKey issues
Stochastic (expensive) function values
Derivatives not (easily) computable

Classifiers applied to unequally sized 
data sets

User defined objective without 
smoothness/connectivity properties
Approximation in “good” regions
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ImplicationsImplications
In 2000

44% of in situ breast carcinomas diagnosed were 
LMP
31% of small localized invasive breast cancers 
were LMP
30% of all breast cancer survivors alive were LMP

These are women who are being treated for a 
pseudo disease

If substantiated, need work to find biological 
marker for LMP to avoid over treating
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