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Abstract

Optimization tools are effective in many application areas. Over the past
decade, optimization models have been used extensively in the field of
radiation therapy. We outline some of the recent optimization
developments that have had some impact in this area, and describe other
techniques that have promise for future application. Some discussion of
perceived advantages and limitations of these approaches will be given.
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The problem

min F (d) s.t. d = Px , x ∈ X , d ∈ D

P is the pencil beam matrix, x are bixel weights

X represents constraints on the bixel weights (typically x ≥ 0, or
cardinality restrictions)

D represents constraints on the dose distribution (bound constraints,
DVH-constraints)
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Issues

min F (d) s.t. d = Px , x ∈ X , d ∈ D

P is extremely large and dense

Must solve problem relatively quickly

Ability to modify solution quickly

In many cases, objective is made up of a weighted sum of objectives:

F (d) =
∑

s

wsF
s(d)

s may range, for example, over structures
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Concrete setting: QP

Can choose F s(d) for each structure s to be a quadratic violation penalty

min
d ,x

∑
s

ws

∥∥d s − d̄ s
∥∥2

2
s.t. d = Px , x ≥ 0

leading to a bound constrained quadratic program

min
x

∑
s

ws(PS ·x − d̄ s)T (PS ·x − d̄ s) s.t. x ≥ 0

Key step for algorithms (gradient projection, two-metric projection,
conjugate gradients):

calculate PT
S·PS ·v for any v and any s

or PT
I · PI ·v where I ⊆ S
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Alternatives: EUD

EUDR,a(d) =
(

1
|R|
∑

i∈R da
i

)1/a
if d > 0

Convex for a ≥ 1 and concave for a ≤ 1.

UR,a,ν,EUD0(d) =
(

1 +
(

EUDR,a(d)
EUD0

)ν)−1

LR,a,ν,EUD0(d) =
(

1 +
(

EUD0
EUDR,a(d)

)ν)−1

Choose F s as − ln U or − ln L

Solve minx≥0 F (Px) using two-metric projection.

Approximate Hessian of F on active and inactive set.

Solve for direction using conjugate gradient steps (uses result of Alber
et al).
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Alternatives: Linear Programming

F (d) =
∥∥d − d̄

∥∥
1

min
∑

i

d+
i + d−i s.t. d+ − d− = Px , x , d+, d− ≥ 0

Similarly any piecewise linear convex penalty leads to a linear program.

How to restart? P → P + ∆P

Barrier method - hard

Simplex method - can generate a feasible solution easily
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CVaRα(d) VaR, CVaR, CVaR+  and CVaR-

Loss 
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CVaR

Probability

Maximum
loss

CVaRα: mean of upper tail at level α the average dose received by the
subset of relative volume (1− α) receiving the highest dose. (Think of
α = 0.95 and this is then the mean of the upper tail, ie those values
beyond the 95th percentile).
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Key observation

Clear that this is equal to the average dose of the (1− α)N voxels (point
volumes) receiving highest dose.
Rewriting this in symbols:

CVaRα(d) = VaRα(d) +
1

(1− α)N

N∑
j=1

(
d − VaRα(d)

)
+

Thus CVaR is just VaR moved to the right by the average of the tail.
The next step is a clever theorem due to Ogryczak and Tamir (2003) that
states this expression can be written as:

CVaRα(d) = min
a∈R

a +
1

(1− α)N

N∑
j=1

(d − a)+


Thus can impose linear constraints to get CVaRα(d) ≤ U
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Generalization

Note that the “average” term can be defined slightly more generally in
terms of expectations, so in fact we could write the last expression in its
general form as:

CVaRα = min
a∈R

{
a +

1

(1− α)
E (d − a)+

}
Other ways possible to shape dose distribution (Ferris et al)
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Apertures instead of beamlets

min F (d) s.t. d = Ax , x ≥ 0

Columns of A are the dose deposited to voxels from an aperture, not
a pencil beam.

x is now the aperture weight.

Note that each column of A corresponds to a sum of columns of P.

Too many apertures, generate them on the fly.
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Master problem

Only use a subset J of the apertures:

min F (d) s.t. d = A·JxJ , xJ ≥ 0

Optimality conditions:

π = ∇F (d)

d = A·JxJ

0 ≤ AT
·Jπ ⊥ xJ ≥ 0

So solving Master Problem gives solution x and d and π.
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Pricing problem

Generate a new column a of A that violates optimality conditions:

aTπ < 0

Aperture is made up of sum of beamlets; choose beamlets to

min
w

(Pw)Tπ s.t. wj ∈ {0, 1}, w ∈W

Decomposes over beams (i.e. P = [P1 P2 · · ·Pn])

Easy to solve if all apertures are feasible

Specialized subproblems (network flows) for
I Interdigitation
I Disconnected apertures

DAO approach is related, generates columns of A on the fly via
simulated annealing, limits number of apertures from each angle.
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IMAT

Suppose you have a number of sweeps (around target)

Idea 1: sequencer produces a set of shapes at each angle in the sweep
(same number of shapes at each angle)

Assign shapes to sweeps to minimize total leaf distance, or maximum
leaf distance, etc

Problem is an easy network flow problem.

How much can weights change as you move?
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IMAT

Idea 2: adapt DAO (simulated annealing)

Given forced change of shape on one sweep, minimize TLD on sweep
to get feasible.

Update weights based on new shapes.
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Example of Apertures in a Sweep

Four possible apertures in a given sweep. Assumed that each horizontal
leaf can only move one unit between each angle.
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Neighborhood sweep

In first case, change is only made to one aperture, others remain feasible.

In second case, change in third aperture forces a change in fourth aperture.
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Network formulation
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Update of weights

min F (Ax) s.t. x ≥ 0

A→ A + ∆A

x(α) =
(
x i − αAT∇F (Ax i )

)
+

Choose α by linesearch on F (x(α)).
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Other extensions

d =
∑
b∈B

Abxb, xb ≥ 0, ∀b ∈ B

Ab =
[
Ab

s1 Ab
s2 · · ·Ab

sn

]
Do we need

∥∥xb − xb+1
∥∥
∞ ≤ δ?

Could implement this as Cx ≤ f .

Could we do column generation here?

But arrange via sweeps, i.e. change Ab
s for a sweep or add a sweep.
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Other work of interest

Sampling (Ferris et al, Martin)

Robust Optimization (Chan et al, Wright et al)

Stochastic Optimization

Image segmentation (Hochbaum)
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