Radiation Treatment Planning: A View from Optimization

Michael C. Ferris

University of Wisconsin-Madison

AAPM, Houston, July 27, 2008

The (deterministic) mathematical problem

$$\min F(d)$$
 s.t. $d = Px, x \in X, d \in D$

- P is a pencil beam matrix, x are bixel weights
- X represents constraints on the bixel weights (typically $x \ge 0$, or cardinality restrictions)
- D represents constraints on the dose distribution (bound constraints, DVH-constraints)
- Alternatively: Columns of P are the dose deposited to voxels from an aperture.
- x is now the aperture weight.
- In practice, too many apertures, generate them on the fly.

Details hidden in definitions of F, X and D

Issues

$$\min F(d)$$
 s.t. $d = Px, x \in X, d \in D$

- P is extremely large and dense
- Must solve problem relatively quickly
- Ability to modify solution quickly

In many cases, objective is made up of a weighted sum of objectives:

$$F(d) = \sum_{s} w_{s} F^{s}(d)$$

s may range, for example, over structures

Different machines, different deliveries, common goals:

- conformity/avoidance
- homogeneity (old), dose shaping (new)
- no streaking

Standard Optimization Approaches

- \bullet F_S is weighted least squares leading to bound constrained quadratic programs
- Key step for algorithms (gradient projection, two-metric projection, conjugate gradients):
 - calculate $P_{S}^T P_{S} \cdot v$ for any v and any s
 - or $P_{I}^{T}P_{I}.v$ where $I \subseteq S$
- Alternative: EUD (convex optimization), TCP, etc
- Alternative: Linear programming, piecewise linear approximation
 - ▶ How to restart? $P \rightarrow P + \Delta P$
 - Barrier method hard
 - ► Simplex method can generate a feasible solution easily
- Extension: discrete variables MIP approaches (CPLEX, XPRESS are commercial methods)

Column Generation

Master Problem: Only use a subset J of the apertures/pencils:

$$\min F(d) \text{ s.t. } d = P_{\cdot J} x_J, x_J \ge 0$$

Optimality conditions:

$$\pi = \nabla F(d), d = P_{.J}x_J, 0 \leq P_{.J}^T\pi \perp x_J \geq 0$$

So solving Master Problem gives solution x and d and π .

Pricing problem: generate a new column a of P that violates optimality conditions: $a^T \pi < 0$

- Decomposes over beams (i.e. $P = [P^1 \ P^2 \ \cdots P^n]$)
- Specialized subproblems (network flows) for
 - Interdigitation
 - Disconnected apertures
- DAO approach is related, generates columns of P on the fly via simulated annealing, limits number of apertures from each angle.

IMAT/Rotational delivery

- Extra constraints on leaf movement along arc
- One idea: adapt DAO (simulated annealing) stochastic guided local search
 - "Randomly" force change in one aperture
 - Cheap update to objective function
 - ► Problem: resulting sweep may not be deliverable: reject change
- Given forced change of shape on one sweep, minimize total leaf distance, or maximum leaf distance on sweep to get feasible.
- Each subproblem is an easy network flow problem.
- Update weights (using restart procedures) based on new shapes.

Dose Shaping

At least fraction α of volume Y should receive doses exceeding L_Y :

$$G(L_Y) = P(D_Y \le L_Y) \le 1 - \alpha$$

Embed this in a broader class of problems:

$$G(t) \leq \Psi(t), 0 \leq t \leq L_Y$$

where $\Psi()$ is a postulated profile of radiation doses in Y. Solution via cutting plane methodology (Dentcheva et al)

Key ideas

Example: Chance Constrained Problems

$$\min_{x \in X} f(x)$$
 s.t. $Prob(C(x, \xi) > 0) \le \alpha$

 α is some threshold parameter, C is vector valued

- joint probabilistic constraint: all constraints satisfied simultaneously possible dependence between random variables in different rows
- extensive literature
- linear programs with probabilistic constraints are still largely intractable (except for a few very special cases)
 - ▶ for a given $x \in X$, the quantity $Prob(C(x,\xi) > 0)$ requires multi-dimensional integration
 - the feasible region defined by a probabilistic constraint is not convex
- Recent work by Ahmed, Leudtke, Nemhauser and Shapiro

Types of Uncertainty

- Parameteric uncertainty (least squares fit of pencil beam)
- Input data uncertainty (tumor extent/patient characteristics)
- Multi-period models (fractionation/dynamics)
- Outcome uncertainty (one treatment precludes another follow up treatment)
- Uncertainty resolution dependent on action (measurements affect dosage)
- Model structural uncertainty (biological response)

Extension: Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution

Often formulated mathematically as

$$\min_{x \in X} f(x) = \mathbb{E}[F(x,\xi)] = \int_{\xi} F(x,\xi)p(\xi)d\xi$$

(p is probability distribution).

- Can think of this as optimization with noisy function evaluations
- Traditional Stochastic Optimization approaches: (Robinson/Munro, Keifer/Wolfowitz)
- Often require estimating gradients: IPA, finite differences
- Stochastic neighborhood search

Example: Two stage stochastic LP with recourse

$$\min_{x \in \mathbb{R}^n} c^T x + \mathbb{E}[\mathcal{Q}(x, \xi)] \text{ s.t. } Ax = b, x \ge 0$$

$$\mathcal{Q}(x, \xi) = \min_{y} q^T y \text{ s.t. } Tx + Wy = h, y \ge 0$$

 $\xi = (q, h, T, W)$ (some are random). Expectation wrt ξ .

x are first stage vars, y are second stage vars.

Special case: discrete distribution $\Omega = \{\xi_i : i = 1, 2, ..., K\}$

Key-idea: Non-anticipativity constraints

• Replace x with x_1, x_2, \dots, x_K

• Non-anticipativity:

$$(x_1, x_2, \dots, x_K) \in L$$

(a subspace) - the H
constraints

Computational methods exploit the separability of these constraints, essentially by dualization of the non-anticipativity constraints.

- Primal and dual decompositions (Lagrangian relaxation, progressive hedging, etc)
- L shaped method (Benders decomposition applied to det. equiv.)
- Trust region methods and/or regularized decomposition

Sampling methods

But what if the number of scenarios is too big (or the probability distribution is not discrete)? use sample average approximation (SAA)

- Take sample ξ_1, \dots, ξ_N of N realizations of random vector ξ
 - viewed as historical data of N observations of ξ , or
 - generated via Monte Carlo sampling
- for any $x \in X$ estimate f(x) by averaging values $F(x, \xi_j)$

(SAA):
$$\min_{x \in X} \left\{ \hat{f}_N(x) := \frac{1}{N} \sum_{j=1}^N F(x, \xi_j) \right\}$$

- Nice theoretical asymptotic properties
- Can use standard optimization tools to solve the SAA problem
- Implementation uses common random numbers, distributed computation
- Monte Carlo Sampling (Quasi-Monte Carlo Sampling)

Example: Robust Linear Programming

Data in LP not known with certainty:

$$\min c^T x \text{ s.t. } a_i^T x \leq b_i, i = 1, 2, \dots, m$$

Suppose the vectors a_i are known to be lie in the ellipsoids (no distribution)

$$a_i \in \varepsilon_i := \{\overline{a}_i + P_i u : \|u\|_2 \le 1\}$$

where $P_i \in \mathbb{R}^{n \times n}$ (and could be singular, or even 0). Conservative approach: robust linear program

$$\min c^T x$$
 s.t. $a_i^T x \leq b_i$, for all $a_i \in \varepsilon_i$, $i = 1, 2, ..., m$

Robust Linear Programming as SOCP

The constraints can be rewritten as:

$$\begin{aligned} b_i & \geq & \sup \left\{ a_i^T x : a_i \in \varepsilon_i \right\} \\ & = & \bar{a}_i^T x + \sup \left\{ u^T P_i^T x : \left\| u \right\|_2 \leq 1 \right\} = \bar{a}_i^T x + \left\| P_i^T x \right\|_2 \end{aligned}$$

Thus the robust linear program can be written as

$$\min c^T x \text{ s.t. } \bar{a}_i^T x + \left\| P_i^T x \right\|_2 \le b_i, i = 1, 2, \dots, m$$

$$\min c^T x$$
 s.t. $(b_i - \bar{a}_i^T x, P_i^T x) \in C$

where C represents the second-order cone. Solution (as SOCP) by Mosek or Sedumi, CVX, etc

Example: Simulation Optimization

- Computer simulations are used as substitutes to understand or predict the behavior of a complex system when exposed to a variety of realistic, stochastic input scenarios
- Simulations are widely applied in epidemiology, engineering design, manufacturing, supply chain management, medical treatment and many other fields
- Optimization applications: calibration, parameter tuning, inverse optimization, pde-constrained optimization

$$\min_{x \in X} f(x) = \mathbb{E}[F(x, \xi)],$$

- The sample response function $F(x,\xi)$
 - typically does not have a closed form, thus cannot provide gradient or Hessian information
 - is normally computationally expensive
 - ▶ is affected by uncertain factors in simulation

Bayesian approach

- The underlying objective function f(x) still has to be estimated.
- Denote the mean of the simulation output for each system as $\mu_i = f(x_i) = \mathbb{E}[F(x_i, \xi)]$
- In a Bayesian perspective, the means are considered as Gaussian random variables whose posterior distributions can be estimated as

$$\mu_i|X \sim N(\bar{\mu}_i, \hat{\sigma}_i^2/N_i),$$

where $\bar{\mu}_i$ is sample mean and $\hat{\sigma}_i^2$ is sample variance. The above formulation is one type of posterior distribution.

- Instrument existing optimization codes to use this derived distribution information
 - Derivative free optimization, surrogate optimization
 - Response surface methodology
 - Evolutionary methods

Example: Risk Measures

• Classical: utility/disutility function $u(\cdot)$:

$$\min_{x \in X} f(x) = \mathbb{E}[u(F(x,\xi))],$$

- Modern approach to modeling risk aversion uses concept of risk measures
 - mean-risk
 - semi-deviations
 - mean deviations from quantiles, VaR, CVaR
 - Römish, Schultz, Rockafellar, Urasyev (in Math Prog literature)
 - Much more in mathematical economics and finance literature
 - Optimization approaches still valid, different objectives

$CVaR_{\alpha}(d)$

 $CVaR_{\alpha}$: mean of upper tail at level α the average dose received by the subset of relative volume $(1-\alpha)$ receiving the highest dose. (Think of $\alpha = 0.95$ and this is then the mean of the upper tail, ie those values beyond the 95th percentile).

Example: Model Predictive Control

- Models predict outputs of dynamical system due to changes in inputs
- Used heavily in chemical engineering (also DP and extensions)

Recap points

Solving a problem with "averaged" data does not work (1/2 time in A, B: never at average location)

How to quantify/measure: tumor/organs might not be volume preserving

- Time available for solution
- Recourse actions available
- Knowledge of uncertainty distribution

Error vs uncertainty: patient positioning

- Overdose today cannot remove dose
- Stochastic integer programming
- Nonlinear (convex or otherwise) recourse models

So what's my point?

- Modeling and optimization model building is key!
- Many different optimization approaches to treat (model) uncertainties
- How much do I know about distribution of data?
- Specific models needed for these applications
- Stochastic model implementation and interfaces to these tools are needed
- Specialized implementations to allow "dense" data, fast updates, nonlinear approaches and approximations