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The (deterministic) mathematical problem

min F (d) s.t. d = Px , x ∈ X , d ∈ D

P is a pencil beam matrix, x are bixel weights

X represents constraints on the bixel weights (typically x ≥ 0, or
cardinality restrictions)

D represents constraints on the dose distribution (bound constraints,
DVH-constraints)

Alternatively: Columns of P are the dose deposited to voxels from an
aperture.

x is now the aperture weight.

In practice, too many apertures, generate them on the fly.

Details hidden in definitions of F , X and D
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Issues

min F (d) s.t. d = Px , x ∈ X , d ∈ D

P is extremely large and dense

Must solve problem relatively quickly

Ability to modify solution quickly

In many cases, objective is made up of a weighted sum of objectives:

F (d) =
∑

s

wsF
s(d)

s may range, for example, over structures
Different machines, different deliveries, common goals:

conformity/avoidance

homogeneity (old), dose shaping (new)

no streaking
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Standard Optimization Approaches

FS is weighted least squares - leading to bound constrained quadratic
programs

Key step for algorithms (gradient projection, two-metric projection,
conjugate gradients):

I calculate PT
S·PS·v for any v and any s

I or PT
I · PI ·v where I ⊆ S

Alternative: EUD (convex optimization), TCP, etc

Alternative: Linear programming, piecewise linear approximation
I How to restart? P → P + ∆P
I Barrier method - hard
I Simplex method - can generate a feasible solution easily

Extension: discrete variables - MIP approaches (CPLEX, XPRESS are
commercial methods)
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Column Generation
Master Problem: Only use a subset J of the apertures/pencils:

min F (d) s.t. d = P·JxJ , xJ ≥ 0

Optimality conditions:

π = ∇F (d), d = P·JxJ , 0 ≤ PT
·J π ⊥ xJ ≥ 0

So solving Master Problem gives solution x and d and π.
Pricing problem: generate a new column a of P that violates optimality
conditions: aTπ < 0

Decomposes over beams (i.e. P = [P1 P2 · · ·Pn])

Specialized subproblems (network flows) for
I Interdigitation
I Disconnected apertures

DAO approach is related, generates columns of P on the fly via
simulated annealing, limits number of apertures from each angle.
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IMAT/Rotational delivery

Extra constraints on leaf movement along arc

One idea: adapt DAO (simulated annealing) - stochastic guided local
search

I “Randomly” force change in one aperture
I Cheap update to objective function
I Problem: resulting sweep may not be deliverable: reject change

Given forced change of shape on one sweep, minimize total leaf
distance, or maximum leaf distance on sweep to get feasible.

Each subproblem is an easy network flow problem.

Update weights (using restart procedures) based on new shapes.
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Dose Shaping

At least fraction α of volume Y should receive doses exceeding LY :

G (LY ) = P(DY ≤ LY ) ≤ 1− α

Embed this in a broader class of problems:

G (t) ≤ Ψ(t), 0 ≤ t ≤ LY

where Ψ() is a postulated profile of radiation doses in Y .
Solution via cutting plane methodology (Dentcheva et al)
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Key ideas
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Example: Chance Constrained Problems

min
x∈X

f (x) s.t. Prob(C (x , ξ) > 0) ≤ α

α is some threshold parameter, C is vector valued

joint probabilistic constraint: all constraints satisfied simultaneously -
possible dependence between random variables in different rows

extensive literature

linear programs with probabilistic constraints are still largely
intractable (except for a few very special cases)

I for a given x ∈ X , the quantity Prob(C (x , ξ) > 0) requires
multi-dimensional integration

I the feasible region defined by a probabilistic constraint is not convex

Recent work by Ahmed, Leudtke, Nemhauser and Shapiro
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Types of Uncertainty

Parameteric uncertainty (least squares fit of pencil beam)

Input data uncertainty (tumor extent/patient characteristics)

Multi-period models (fractionation/dynamics)

Outcome uncertainty (one treatment precludes another follow up
treatment)

Uncertainty resolution dependent on action (measurements affect
dosage)

Model structural uncertainty (biological response)
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Extension: Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min
x∈X

f (x) = E[F (x , ξ)] =

∫
ξ
F (x , ξ)p(ξ)dξ

(p is probability distribution).

Can think of this as optimization with noisy function evaluations

Traditional Stochastic Optimization approaches: (Robinson/Munro,
Keifer/Wolfowitz)

Often require estimating gradients: IPA, finite differences

Stochastic neighborhood search
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Example: Two stage stochastic LP with recourse

min
x∈Rn

cT x + E[Q(x , ξ)] s.t. Ax = b, x ≥ 0

Q(x , ξ) = min
y

qT y s.t. Tx + Wy = h, y ≥ 0

ξ = (q, h,T ,W ) (some are random). Expectation wrt ξ.
x are first stage vars, y are second stage vars.
Special case: discrete distribution Ω = {ξi : i = 1, 2, . . . ,K}

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

Deterministic equivalent problem
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Key-idea: Non-anticipativity constraints

Replace x with
x1, x2, . . . , xK

Non-anticipativity:
(x1, x2, . . . , xK ) ∈ L
(a subspace) - the H
constraints

to let x,... , be copies of the firststage variable and rewrite (15) as 

1 , . . . ,r 16) 

The equations x ... = x express independence of first-stage decisions on the realizations 
of h and are called non-anticipativity constraints. Of course, there are several ways to express 
this property. To be flexible in this respect and for notational convenience we assume that 
non-anticipativity is represented by the constraint XX=i Hx = 0 where H = ( , . . . , H 
is a suitable matrix. The block structure of the constraints matrix of formulation (16) can be 
seen in igure 2 . Separability of 16) can be achieved when removing the non-anticipativit 

T W 

T 

H 

W 

igure Constraints matrix of the scenario formulation 16) 

conditions from the constraints. This leads to considering the following agrangian relaxation 
of 16) 

(\ min { J2 {x y : A < 6 G X, 

< h, y 1 , . . . r } , 

17) 

where 

(x y (cx \{ for 1 , . . . r 

The problem max^ D(X) is called the Lagrangian dual of (16). From the theory of integer 
linear programming it is well known (cf. Nemhauser and Wolsey 1988) that the optimal value 
of the agrangian dual is a lower bound to the optimal value of (16) which is strict in general 
but greater than or equal on the lower bound given by the LP relaxation of 16). If for some 

Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.

Primal and dual decompositions (Lagrangian relaxation, progressive
hedging, etc)

L shaped method (Benders decomposition applied to det. equiv.)

Trust region methods and/or regularized decomposition
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Sampling methods
But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

Implementation uses common random numbers, distributed
computation

Monte Carlo Sampling (Quasi-Monte Carlo Sampling)
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Example: Robust Linear Programming

Data in LP not known with certainty:

min cT x s.t. aT
i x ≤ bi , i = 1, 2, . . . ,m

Suppose the vectors ai are known to be lie in the ellipsoids (no
distribution)

ai ∈ εi := {āi + Piu : ‖u‖2 ≤ 1}

where Pi ∈ Rn×n (and could be singular, or even 0).
Conservative approach: robust linear program

min cT x s.t. aT
i x ≤ bi , for all ai ∈ εi , i = 1, 2, . . . ,m
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Robust Linear Programming as SOCP

The constraints can be rewritten as:

bi ≥ sup
{

aT
i x : ai ∈ εi

}
= āT

i x + sup
{

uTPT
i x : ‖u‖2 ≤ 1

}
= āT

i x +
∥∥∥PT

i x
∥∥∥

2

Thus the robust linear program can be written as

min cT x s.t. āT
i x +

∥∥∥PT
i x
∥∥∥

2
≤ bi , i = 1, 2, . . . ,m

min cT x s.t. (bi − āT
i x ,PT

i x) ∈ C

where C represents the second-order cone. Solution (as SOCP) by Mosek
or Sedumi, CVX, etc
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Example: Simulation Optimization

Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields

Optimization applications: calibration, parameter tuning, inverse
optimization, pde-constrained optimization

min
x∈X

f (x) = E[F (x , ξ)],

The sample response function F (x , ξ)
I typically does not have a closed form, thus cannot provide gradient or

Hessian information
I is normally computationally expensive
I is affected by uncertain factors in simulation
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Bayesian approach

The underlying objective function f (x) still has to be estimated.

Denote the mean of the simulation output for each system as
µi = f (xi ) = E[F (xi , ξ)]

In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

µi |X ∼ N(µ̄i , σ̂
2
i /Ni ),

where µ̄i is sample mean and σ̂2
i is sample variance. The above

formulation is one type of posterior distribution.

Instrument existing optimization codes to use this derived distribution
information

I Derivative free optimization, surrogate optimization
I Response surface methodology
I Evolutionary methods
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Example: Risk Measures

Classical: utility/disutility function u(·):

min
x∈X

f (x) = E[u(F (x , ξ))],

Modern approach to modeling risk aversion uses concept of risk
measures

I mean-risk
I semi-deviations
I mean deviations from quantiles, VaR, CVaR
I Römish, Schultz, Rockafellar, Urasyev (in Math Prog literature)
I Much more in mathematical economics and finance literature
I Optimization approaches still valid, different objectives
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CVaRα(d) VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

CVaRα: mean of upper tail at level α the average dose received by the
subset of relative volume (1− α) receiving the highest dose. (Think of
α = 0.95 and this is then the mean of the upper tail, ie those values
beyond the 95th percentile).
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Example: Model Predictive Control
Models predict outputs of dynamical system due to changes in inputs
Used heavily in chemical engineering (also DP and extensions)

– 4 –

Union Carbide, in collaboration with Ramo-Wooldridge, implemented an on-line computer control and optimization
system, based also on the RW300, at the Seadrift, Texas plant’s ethylene oxide unit.  The implementation was not a
classical mathematical programming type optimization.  It was an implied “maximize production”  optimization with
a feed allocation algorithm for multiple parallel reactors followed by a serial train of reactors to convert all the
remaining ethylene before exhausting to the air.  However, there was no open publication reporting this venture.
Baxley and Bradshaw (1998) believe that the first open report related to a similar computer control venture was by
Monsanto.  It appears that computer control and on-line optimization were ideas whose time had come.  It also
appears that on-line optimization was performed every few hours at the supervisory level, using steady-state models.
Certainly, the speed and storage capacity of computers available at the time must have played a role.  As the
capability of computers increased, so did the size and sophistication of on-line optimization.  Early projects usually
included ethylene units and major oil refinery processes such as crude distillation units and fluid catalytic cracking
(FCC) units (Darby and White, 1988).  “The objective function was generally an economic one but we had the
flexibility to select alternative ones if the operating and/or business environment suggested another, e.g., maximize
ethylene production, minimize ethylene costs, etc.  We were getting the tools to be more sophisticated and we took
advantage of them where it made economic sense.”   (Baxley and Bradshaw, 1998).

Figure 1.  Model Predictive Control Scheme

In the early seventies, practitioners of process control in the chemical industry capitalized on the increasing
speed and storage capacity of computers, by expanding on-line optimization to process regulation through more
frequent optimization.  This necessitated the use of dynamic models in the formulation of on-line optimization
problems that would be solved every few minutes.  What we today call MPC was conceived as a control algorithm

 

 

 

 

time =  tk+1 

Take process measurements 

Process model =  
Current & future 

• Control actions 
• Disturbances 

Future process 
outputs 

Objectives 
 

Constraints 

Solve above optimization problem 
⇓  

Best current and future control actions 

Implement best current control action 

@ time = tk 

courtesy: Nikolaou
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Recap points

Solving a problem with “averaged” data does not work (1/2 time in A, B:
never at average location)
How to quantify/measure: tumor/organs might not be volume preserving

Time available for solution

Recourse actions available

Knowledge of uncertainty distribution

Error vs uncertainty: patient positioning

Overdose today - cannot remove dose

Stochastic integer programming

Nonlinear (convex or otherwise) recourse models
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So what’s my point?

Modeling and optimization model building is key!

Many different optimization approaches to treat (model) uncertainties

How much do I know about distribution of data?

Specific models needed for these applications

Stochastic model implementation and interfaces to these tools are
needed

Specialized implementations to allow “dense” data, fast updates,
nonlinear approaches and approximations
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