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The (deterministic) mathematical problem

min F(d) s.t. d = Px,xe X,d € D

@ P is a pencil beam matrix, x are bixel weights

@ X represents constraints on the bixel weights (typically x > 0, or
cardinality restrictions)

@ D represents constraints on the dose distribution (bound constraints,
DVH-constraints)

@ Alternatively: Columns of P are the dose deposited to voxels from an
aperture.

@ x is now the aperture weight.

@ In practice, too many apertures, generate them on the fly.

Details hidden in definitions of £, X and D
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Issues

min F(d) s.t. d =Px,x e X,d e D

@ P is extremely large and dense
@ Must solve problem relatively quickly

@ Ability to modify solution quickly

In many cases, objective is made up of a weighted sum of objectives:
F(d) =) wsF*(d)
S

s may range, for example, over structures
Different machines, different deliveries, common goals:

e conformity/avoidance
@ homogeneity (old), dose shaping (new)

@ no streaking
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Standard Optimization Approaches

o Fs is weighted least squares - leading to bound constrained quadratic
programs
o Key step for algorithms (gradient projection, two-metric projection,
conjugate gradients):
» calculate P}fPs.v for any v and any s
» or P/ Pi.v where | C S
@ Alternative: EUD (convex optimization), TCP, etc
@ Alternative: Linear programming, piecewise linear approximation

» How to restart? P — P+ AP
» Barrier method - hard
» Simplex method - can generate a feasible solution easily

@ Extension: discrete variables - MIP approaches (CPLEX, XPRESS are
commercial methods)
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Column Generation
Master Problem: Only use a subset J of the apertures/pencils:

min F(d) st. d=Px;,x; >0
Optimality conditions:
T =VF(d),d=Px;,0<Plr Lx;>0

So solving Master Problem gives solution x and d and .
Pricing problem: generate a new column a of P that violates optimality
conditions: a’m < 0

@ Decomposes over beams (i.e. P =[Pl P? ... P"))
@ Specialized subproblems (network flows) for

> Interdigitation
» Disconnected apertures

@ DAO approach is related, generates columns of P on the fly via
simulated annealing, limits number of apertures from each angle.
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IMAT /Rotational delivery

@ Extra constraints on leaf movement along arc
@ One idea: adapt DAO (simulated annealing) - stochastic guided local
search
» “Randomly” force change in one aperture
» Cheap update to objective function
» Problem: resulting sweep may not be deliverable: reject change
@ Given forced change of shape on one sweep, minimize total leaf
distance, or maximum leaf distance on sweep to get feasible.
@ Each subproblem is an easy network flow problem.
e Update weights (using restart procedures) based on new shapes.
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Dose Shaping

At least fraction a of volume Y should receive doses exceeding Ly:
G(Ly)=P(Dy <Ly)<l-a«
Embed this in a broader class of problems:
G(t) <WV(t),0<t<lLy

where W() is a postulated profile of radiation doses in Y.
Solution via cutting plane methodology (Dentcheva et al)
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Example: Chance Constrained Problems

)r(nei)rg f(x) s.t. Prob(C(x,&) >0) < «

« is some threshold parameter, C is vector valued

@ joint probabilistic constraint: all constraints satisfied simultaneously -
possible dependence between random variables in different rows
@ extensive literature

@ linear programs with probabilistic constraints are still largely
intractable (except for a few very special cases)

» for a given x € X, the quantity Prob(C(x, &) > 0) requires
multi-dimensional integration
» the feasible region defined by a probabilistic constraint is not convex

@ Recent work by Ahmed, Leudtke, Nemhauser and Shapiro
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Types of Uncertainty

Parameteric uncertainty (least squares fit of pencil beam)
Input data uncertainty (tumor extent/patient characteristics)

Multi-period models (fractionation/dynamics)

Outcome uncertainty (one treatment precludes another follow up
treatment)

@ Uncertainty resolution dependent on action (measurements affect
dosage)

Model structural uncertainty (biological response)
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Extension: Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min f(x) = E[F(x.€)] = /ﬁ F(x,&)p(§)d¢

(p is probability distribution).
@ Can think of this as optimization with noisy function evaluations

e Traditional Stochastic Optimization approaches: (Robinson/Munro,
Keifer /Wolfowitz)

@ Often require estimating gradients: IPA, finite differences

@ Stochastic neighborhood search
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Example: Two stage stochastic LP with recourse

min ¢"x + E[Q(x,£)] s.t. Ax=b,x >0

xeRn

Q(x,6) =ming y st. Tx+ Wy =h,y >0
y

¢ =1(q,h, T, W) (some are random). Expectation wrt &.
x are first stage vars, y are second stage vars.

Special case: discrete distribution Q = {&; : i =1,2,...,K}

A

T

v |

Deterministic equivalent problem
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Key-idea: Non-anticipativity constraints

]

@ Replace x with
X1, X2, -+, XK

@ Non-anticipativity:
(x1,%2,...,xk) € L r

(a subspace) - the H ‘ I
constraints
Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.
@ Primal and dual decompositions (Lagrangian relaxation, progressive
hedging, etc)
o L shaped method (Benders decomposition applied to det. equiv.)

@ Trust region methods and/or regularized decomposition
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

@ Take sample &1,...,&y of N realizations of random vector &

» viewed as historical data of N observations of &, or
> generated via Monte Carlo sampling

e for any x € X estimate f(x) by averaging values F(x, ;)
N
(SAA): min fu(x) = Z: x, &)

@ Nice theoretical asymptotic properties
@ Can use standard optimization tools to solve the SAA problem

@ Implementation uses common random numbers, distributed
computation

e Monte Carlo Sampling (Quasi-Monte Carlo Sampling)
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Example: Robust Linear Programming

Data in LP not known with certainty:

minc’ x s.t. a,Txgb,-,izl,Z...,m

Suppose the vectors a; are known to be lie in the ellipsoids (no
distribution)

aj €ei:=A{ai+ Pju:|ul, <1}

where P; € R™*" (and could be singular, or even 0).
Conservative approach: robust linear program

minc’ x s.t. a,~Tx§b,-, forallaj €e;,i=1,2,...,m
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Robust Linear Programming as SOCP

The constraints can be rewritten as:
T, .
b > sup{a,- X:aj € 5;}
= 3/ x+sup {uTP,-Tx ully < 1} =3/ x+ HP,-TXH2
Thus the robust linear program can be written as

minc’x s.t. E,Tx—i— HP,-TXH <bj,i=12,....,m
2

minc’x st. (b — 3] x, P/ x) e C

where C represents the second-order cone. Solution (as SOCP) by Mosek
or Sedumi, CVX, etc
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Example: Simulation Optimization

@ Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

@ Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields

@ Optimization applications: calibration, parameter tuning, inverse
optimization, pde-constrained optimization

min f(x) = E[F(x.€)]

@ The sample response function F(x, &)
» typically does not have a closed form, thus cannot provide gradient or
Hessian information
> is normally computationally expensive
> is affected by uncertain factors in simulation
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Bayesian approach

@ The underlying objective function f(x) still has to be estimated.

@ Denote the mean of the simulation output for each system as
pi = f(x;) = E[F(xi, )]

@ In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

il X ~ N(fi;, 67/ N;),

where [i; is sample mean and 6,-2 is sample variance. The above
formulation is one type of posterior distribution.

@ Instrument existing optimization codes to use this derived distribution
information

» Derivative free optimization, surrogate optimization
» Response surface methodology
» Evolutionary methods
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Example: Risk Measures

o Classical: utility/disutility function u(-):

min f(x) = E[u(F(x,£))],

xeX

@ Modern approach to modeling risk aversion uses concept of risk

measures

» mean-risk

semi-deviations
mean deviations from quantiles, VaR, CVaR
Rémish, Schultz, Rockafellar, Urasyev (in Math Prog literature)
Much more in mathematical economics and finance literature
Optimization approaches still valid, different objectives

vV vy vy VvYyy
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CVaR,(d)

Maximum
loss

Frequency

Probablhty
1-a
-l \||||
.m||I||] ||| [ T—

Loss

CVaR,: mean of upper tail at level o the average dose received by the
subset of relative volume (1 — «) receiving the highest dose. (Think of
a = 0.95 and this is then the mean of the upper tail, ie those values

e i .
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Example: Model Predictive Control

@ Models predict outputs of dynamical system due to changes in inputs
@ Used heavily in chemical engineering (also DP and extensions)

I

‘ Take process measurements '

Process model = o
Current & future PR — Objectives
« Control actions G pus .
« Distubances P! Constraints
Sol ve above optimi zation problem
O
Best current and future control actions

v

‘ Implement best current control action '
time= tyy I
courtesy: Nikolaou
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Recap points

Solving a problem with “averaged” data does not work (1/2 time in A, B:
never at average location)

How to quantify/measure: tumor/organs might not be volume preserving
@ Time available for solution
@ Recourse actions available

@ Knowledge of uncertainty distribution
Error vs uncertainty: patient positioning

@ Overdose today - cannot remove dose

@ Stochastic integer programming

o Nonlinear (convex or otherwise) recourse models
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So what's my point?

Modeling and optimization model building is key!
Many different optimization approaches to treat (model) uncertainties
How much do | know about distribution of data?

Specific models needed for these applications

Stochastic model implementation and interfaces to these tools are
needed

Specialized implementations to allow “dense” data, fast updates,
nonlinear approaches and approximations
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