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Data science: motivation

Optimization: basic components and tradeoffs

Modeling: using constraints to add domain knowledge/structure

Uncertainty: how to deal with randomness
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Descriptive, Predictive, Prescriptive

Use collected information for reporting

y = ϕ(a)

Apply models to forecast future events

yj ≈ ϕ(aj ; x)

Increase sophistication of analysis to evaluate which decisions lead to
desired outcomes

min
(a,y)∈Ω

v(a, y) s.t. y = ϕ(a; x)

And then add uncertainty...
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Successful data analytics: some features

Financial:
▶ standards for

interconnectivity
(transfers)

Weather:
▶ large scale, real time
▶ open source/access
▶ no private information

(but apps that present
information differently)

▶ data provider is not the
same as user

Medical
▶ shared/private information
▶ multiple data types

Travel:
▶ links different types of agents

(drivers, riders, administrators)
▶ real time, large scale
▶ congestion pricing

(public/summary information)
▶ trips (private information)
▶ required (user) inputs to generate

specific user outputs

All have reliable acquisition. Need to name things consistently.
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1: Data Science

Extract meaning from data: learning

Use this knowledge to make predictions: inference

Optimization provides tools for modeling / formulation / algorithms

Modeling and domain-specific knowledge is vital in practice: “80% of
data analysis is spent on the process of cleaning and preparing the
data.”
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2: Optimization
There is an objective (function) which we are seeking to maximize or
minimize described by:

f : S ⊆ Rn → R ∪ {+∞/−∞} =: R̄

Objective function of variables (or unknowns) f (x) where x ∈ Rn.

Variables could be subject to constraints such as h(x) = 0.

The feasible set is described by

Ω = {x |h(x) = 0, g(x) ≤ 0}

This generates a program of the form

min
x∈Ω

f (x)

Unconstrained problems have Ω = Rn which is the whole space

What about Ω ̸= Rn?

Constrained problems can be treated in various ways, including
nonlinear, nonconvex problems and convex cones for example.
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Four components to optimization

1 Calculus (analysis, probability)

2 Geometry or structure (convexity, polyhedral, discrete)

3 Computation (using linear algebra and sparse tools)

4 Data

Iterative algorithms generate a series of points which hopefully
converge to the solution: issues about well defined (computable), how
fast, what they converge to, and how to check properties of the end
point.

Will need all four components; understanding how they link together
is important for full command of optimization
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Linear vs. Nonlinear / Stochastic vs Deterministic

If f , gi , hi are affine then we have a linear program.

min f (x)

s.t. gi (x) ≤ 0

hi (x) = 0

Linear problems tend to come from the decision sciences whereas
nonlinear problems often arise from physical systems.

A problem is stochastic if data is not known beforehand. It may arise
from some known distribution or assumed via statistical
measurements.

Note the difference between stochastic data and stochastic programs
and stochastic algorithms.
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Continuous Vs. Discrete

In a discrete problem, only the points would be feasible. In a
continuous problem, the whole shaded region is feasible.

Use case: discrete entities, logic
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Global vs Local

We use the notion of local and global minimizers

The local minimum is clearly a minimum only within its neighborhood.

Convex functions are ones for which local minimizers are global minimizers.
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3: What is meant by a model?

Many of us build (computer/mathematical) models that capture
physics, dynamics, stochastics, discrete choices, and to some extent
behavior: collaboration, competition

Model of system ϕ(a; x)

a = (s, d): Actions or designs d affect state s, parameters x
energy example: state s = electricity flow, actions d =
investment/operations, parameters x = loss rate/fuel cost

Optimization determines model parameters x (based on data -
machine learning) (training)

Can use ϕ(s, d ; x) to predict state evolution or specfic outcomes

Validation ensures predictions are good (testing)
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Typical Setup

After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m

Outcome / observation / label yj for each feature vector

The outcomes yj could be:

a real number: regression

a label indicating the aj lies in one of M classes (for M ≥ 2):
classification. (M can be very large)

no labels (yj is null):
▶ subspace identification: locate low-dimensional subspaces that

approximately contain the (high-dimensions) vectors aj
▶ clustering: partition the aj into clusters; each cluster groups objects

with similar features.
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Fundamental Data Analysis

Seek a function ϕ that:

approximately maps aj , to yj for each j ; ϕ(aj) ≈ yj , j = 1, 2, . . . ,m

satisfies additional properties to make it “plausible” for the
application, robust to perturbations in the data, generalizable to other
data samples from the same distribution.

Can usually define ϕ in terms of some parameter vector x - thus
identification of ϕ becomes a data-fitting problem:

Find a nice x such that ϕ(aj ; x) ≈ yj for j = 1, 2, . . . ,m

Objective function in this problem often built up of m terms that
capture mismatch between predictions and observations for data item
(aj , yj)

The process of finding ϕ is called learning or training.
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What’s the use of the mapping ϕ?

Prediction: Given new data vector ak , predict outputs yk ← ϕ(ak ; x).

Analysis: ϕ (more particularly the parameter x) reveals structure in
the data

Many possible complications:

Noise or errors in aj and yj

Missing data:

Overfitting: ϕ exactly fits the set of training data (aj , yj) but predicts
poorly on “out-of-sample” data (ak , yk)
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ML models in practice

Regression: ϕ(aj ; x) = aTj x .

min
x

f (x) :=
1

2

m∑
j=1

(aTj x − yj)
2

Add ℓ2 = ∥x∥2 reduces sensitivity to noise in y

Add ℓ1 = ∥x∥1 yields solutions x with few non-zeros (Feature
selection)

loss function +λ ∗ R(x)
Sparse PCA.

Linear Support Vector Machines (kernel SVM)

Logistic Regression

Deep learning

All of these models can be augmented by domain specific knowledge,
leading to nonlinear and/or constrained optimization
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What does optimization add?

Value of outcome v(s, d) (e.g s electricity flows in network, d
capacity expansion, v is operation profit)

How to use model to suggest good actions/designs (s, d)?

Constrained optimization chooses (feasible) actions to maximize value

max
(s,d)∈Ω

v(s, d) s.t. ϕ(s, d ; x)

Optimization can be hard to solve (non-convex)

Models can be complex and difficult to explain, often ignored by
decision makers, yet their solution can lead to fundamentally new
insights

Simple rules (policies) d = π(s), reduce complexity of optimization,
enhance explainability
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Dairy Brain - a continuous decision aiding engineDairy Brain - a continuous decision making engine

PHASE 1

Data collected on-farm

PHASE 5

Value-added info 
accessed at farm via web 

interface

PHASE 2

Farm data from multiple 
sources transferred to a 
central location

PHASE 4

Analytic services applied

PHASE 3

Data transformed and 
normalized

On farm processes

Processing and standardization

Project supported by NIFA-AFRI-FACT 
Competitive Grant No. 2018-09256

Translate research outcomes to practical applications

Provide access to analytical services to enhance
operations
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Application Programming Interface (API) design
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Cow health
Early ketosis identification

Early Prediction of Clinical Mastitis

Monitoring the Risk of CM for 1st
Lactation Heifers

Nutritional grouping
Group of cows Cluster cows Differentiated diet
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Covid-19 vaccine allocation (with DHS/National Guard)

Two phase optimization(first phase: fair allocation, second phase:
logistics)

https://www.dhs.wisconsin.gov/covid-19/vaccine-data.htm
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4: Planning models have uncertainty at various time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term effects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness/resilience

Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model
Investment decisions are z at cost K (z)
Operating decisions are: generation y at cost C (y), loadshedding q at
cost Vq.
Random demand is d(ω).
Minimize capital cost plus expected operating cost:

P: min
z,y ,q∈X

K (z) + Eω[C (y(ω)) + Vq(ω)]

s.t. y(ω) ≤ z ,
y(ω) ≥ d(ω)− q(ω),
zN ≤ (1− θ)zN (2017)

Who do you have on your bench, what
reserves are in your plan?
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Scenario tree with nodes N = {1, 2, . . . , 9}, and T = 3

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

At leaf nodes:

min
xaℓ∈Xaℓ

← faℓ(xaℓ; x9aℓ,πℓ) ∀a ∈ A,

0 ∈ Hℓ(πℓ; x·ℓ) + NPℓ
(πℓ)

“;” separates variables from parameters in function definition
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Stochastic equilibrium (MOPEC)

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

Agents solve problem at root node, linking at all nodes:

min
xa·∈Xa0

fa1(xa1; x9a1,π1)

+ ρa1([faj(xaj ; x9aj ,πj) + ρaj([faℓ(xaℓ; x9aℓ,πℓ)]ℓ∈j+)]j∈1+) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ T .
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Scenario trees linked across agents

Dynamics link over time

Complementarity links nodes of
scenario tree across agents

Three sources of difficulty:

1 Size: number of scenarios,
agents, details

2 Non-convexity: Nash behavior

3 Risk aversion: Nonsmooth or
Nonlinear (product of
probabilities)
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Risk Measures: example of structure

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
y∈D

Ey [Z ]

If D = {p} then ρ(Z ) = E[Z ]
If Dα,p = {y ∈ [0, p/(1− α)] : ⟨1, y⟩ = 1}, then ρ(Z ) = CVaRα(Z )

Combinations - increasing risk aversion as λ increases

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )
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The transformation to complementarity

min
x∈X

θ(x) + ρ(F (x))

where ρ(u) = sup
y∈D

{
⟨y , u⟩ − 1

2
⟨y ,My⟩

}
optimality condition:

0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

calculus:

0 ∈ ∂θ(x) +∇F (x)T y + NX (x)

0 ∈−y + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) +My + ND(y)

This is a complementarity problem: opt conds in x coupled with opt
conds in y - separated
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Stochastic Equilibrium as (extended) MOPEC

min
xa·∈Xa0

fa1(xa1; x−a1,π1)+

∑
j∈1+

yaj

faj(xaj ; x−aj ,πj) +
∑
ℓ∈j+

yaℓfaℓ(xaℓ; x−aℓ,πℓ)

 , ∀a ∈ A
(1)

0 ∈Hj(πj ; x·j) + NPj
(πj), ∀j ∈ T (2)

ra1(x ,π) = max
ya1+∈Da1

∑
j∈1+

yaj(faj(xaj ; x−aj ,πj) + raj(x ,π))

ra2(x ,π) = max
ya2+∈Da2

∑
ℓ∈2+

yaℓfaℓ(xaℓ; x−aℓ,πℓ)

ra3(x ,π) = max
ya3+∈Da3

∑
ℓ∈3+

yaℓfaℓ(xaℓ; x−aℓ,πℓ)

ra4(x ,π) = max
ya4+∈Da4

∑
ℓ∈4+

yaℓfaℓ(xaℓ; x−aℓ,πℓ)

(3)
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Algorithms and problems

PATH: nonsmooth Newton method (defaults) (blue+red+black)

PD (Primal-dual): iteratively blue+red then black

PD-PTH (Primal-dual + PATH)

PD-CC-PTH (Primal-dual + convex-comb(black) + PATH)

Homot(λ) + Primal-dual + convex-comb(black) + PATH

Multistage economic dispatch, capacity expansion, hydroelectric
system

3 types of demand formulation (I,II and III)

Two scenario trees (4 stages, 40 nodes) and (4 stages, 156 nodes)

32 data instances for each formulation

Several modulus of convexity and risk aversion parameters

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )

Ferris (Univ. Wisconsin) Design/Impact Supported by NSF,DOE 28 / 31



Dispatch example, large tree, type I

quad λ PATH PD PD-PTH PD-CC-PTH Homotopy

0 0.1 0.0 0.0 59.4 100.0 100.0
0 0.3 0.0 0.0 12.5 96.9 100.0
0 0.5 0.0 0.0 9.4 71.9 87.5
0 0.7 0.0 0.0 3.1 18.8 53.125
0 0.9 0.0 0.0 0.0 9.4 21.875
1e-2 0.1 28.1 15.6 100.0 100.0 100.0
1e-2 0.3 0.0 0.0 90.6 100.0 100.0
1e-2 0.5 0.0 0.0 40.6 100.0 100.0
1e-2 0.7 0.0 0.0 21.9 84.4 93.8
1e-2 0.9 0.0 0.0 6.2 53.1 68.75
1e-1 0.1 0.0 59.4 100.0 100.0 100.0
1e-1 0.3 0.0 43.8 100.0 100.0 100.0
1e-1 0.5 0.0 18.8 96.9 100.0 100.0
1e-1 0.7 0.0 12.5 100.0 100.0 100.0
1e-1 0.9 0.0 15.6 93.8 100.0 100.0
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Impact of Electric Vehicles on Generator Investments

Carbon Goals: 60% reduction
on in-state carbon emissions

Nuclear (low-carbon) used

Coal steam generators shut
down, supplanted by renewables

Additional 180,000 MWh
demand for EVs

Storage investment needed

Additional demand or carbon
goals give more dramatic effects
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Conclusions

Value of (constrained) optimization

Constraints can capture domain knowledge much more than a single
objective

Machine learning can be used to inform models

Informed strategic decisions and tradeoffs

Horses for courses: simple policies are effective

Facility location: where to locate reserves, agents, sizing

Disaster recovery: hedging risk, promoting flexibility, dynamics,
windows and staging

Risk models: not all outcomes are equally bad, trade risk

Truth is in the details

Thanks to collaborators: Andy Philpott, Olivier Huber, Jiajie Shen,
Steve Wangen, Kristine Palmer, Adam Christensen, Victor Cabrera
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Issues regarding what to do for who?

Policy or individual farm?

Operational (precision) or strategic?

When are decisions made: yearly, seasonal, daily, hourly?

Inform human-in-the-loop decision making

Ownership: whose data is it, after change/cleaning

Privacy: who can see what and when

Scale: the big data issue

Missing data
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A mathematical modelling approach to planning

Build and solve a social plannning model that optimizes electricity
capacity investment with constraints on CO2 emissions.

Social planning solution should be stochastic: i.e. account for future
uncertainty

Social planning solution should be risk-averse: because the industry is.

Approximate the outcomes of the social plan by a competitive
equilibrium with risk-averse investors.

Compensate for market failures from imperfect competition or
incomplete markets.
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Implementation details

Use optimization modeling system, api’s to sophisticated solvers
(Cplex, Gurobi, Mosek, Conopt, Knitro)

1 Aggregate: build a (rigorous) approximation of underlying physics and
stochastics to generate a “system model”

2 Solve: Use simple approximation to detemine key design, incorporate
(some level of) operation

3 Validate/Visualize: Use detailed model evaluations to verify operations
are effective

4 Rinse and repeat

Key use of constraints to modify solutions, capture appropriate detail

Address issues of risk and uncertainty

Data driven hybrid approach - model based learning by interaction

Extensions: sequential decision making (multiple time steps with
dynamic model updates).
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