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Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I
∑

Gen MW ≥
∑

Load MW, at all times.
I Power flows cannot exceed lines’ transfer capacity.

Ferris (Univ. Wisconsin) Equilibrium and Energy Economics Supported by DOE/ARPA-E 2 / 31



Single market, single good: equilibrium

Walras: 0 ≤ s(π)− d(π) ⊥ π ≥ 0

Market design and rules to
foster competitive
behavior/efficiency

Spatial extension: Locational
Marginal Prices (LMP) at nodes
(buses) in the network

Supply arises often from a generator
offer curve (lumpy)

Technologies and physics affect
production and distribution
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Satellite data, FERC and Reserves

Solar transmittance and power

9 

 

 

Figure 1: This figure illustrates how the CLAVR-x retrievals will be used to provide a regime dependent bias correction to 
the CAPS ensemble mean cloud forecast by considering a specific time period (19:00 GMT on May 15, 2012). The upper left 
panel shows the CLAVR-x cloud transmittance retrieval, binned into the CAPS ensemble model 4km grid. The locations of 
solar (red) and wind (black) power generation facilities are indicated by the circles. The upper right panel shows the CAPS 
ensemble mean cloud transmittance forecast and the lower right panel shows the estimated uncertainty in the CAPS ensemble 
transmittance forecast (%) based on the ensemble variance. The lower left panel shows the median and standard deviations of 
the observed (black) and forecast (red) transmittance for each observed cloud regime (clear, probably clear, fog, water cloud, 
super cooled water, mixed water/ice, opaque ice, cirrus, overlap, and overshooting). Clear scenes have a transmission of 1 
meaning that all the incident solar radiation reaches the surface.  Opaque ice clouds are found in regions of extensive high 
cloudiness (Eastern Texas for example) and have the lowest transmittance, meaning that much of the solar radiation does not 
reach the surface.   The CAPS ensemble mean transmittance is found to be systematically low for all cloud regimes with the 
largest biases found for fog and low cloud scenes. Relatively low biases are found for opaque ice clouds.  However, the 
uncertainty in the CAPS ensemble mean transmittance is largest for low transmittance clouds.     

Generators set aside
capacity for
“contingencies” (reserves)

Separate energy πd and
reserve πr prices

Use 12 hour cloud cover
forecasts to reduce
reserves

Federal Energy Regulatory
Commission (FERC) contract to
build models and data

Provided on NEOS (Network
enabled optimization system)
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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min
x

c(x) cost

s.t. Ax ≥ q balance

Bx = b, x ≥ 0 technical constr

q = d(π): issue is that π is the multiplier on the “balance” constraint

Such multipliers (LMP’s) are critical to operation of market

Can try to solve the problem iteratively (shooting method):

πnew ∈ multiplier(OPF (d(π)))
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Alternative: Form KKT of QP, exposing π to modeler

L(x , µ, λ) = c(x) + µT (d(π)− Ax) + λT (b − Bx)

0 ≤ −∇µL = Ax − d(π) ⊥ µ ≥ 0

0 = −∇λL = Bx − b ⊥ λ

0 ≤ ∇xL = ∇c(x)− ATµ− BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
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Alternative: Form KKT of QP, exposing π to modeler

0 ≤ Ax − d(π) ⊥ π ≥ 0

0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATπ − BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
LCP/MCP is then solvable using PATH

z =

πλ
x

 , F (z) =

 A
B

−AT −BT

 z +

−d(π)
−b
∇c(x)


Existence, uniqueness, stability from variational analysis

EMP does this automatically from the annotations
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Other applications of complementarity

Complementarity can model fixed points and disjunctions

Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems

Engineering: Optimal control (ELQP)

Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propagation

Good solvers exist for large-scale instances of Complementarity Problems
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Extension: MOPEC

min
xi
θi (xi , x−i , π) s.t. gi (xi , x−i , π) ≤ 0,∀i

π solves h(x , π) = 0

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h pi

(Generalized) Nash

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Perfect competition

max
xi

πT xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤π ⊥
∑
i

xi − d(π) ≥ 0

When there are many agents, assume none can affect π by themselves

Each agent is a price taker

Two agents, d(π) = 24− π, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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Cournot: two agents (duopoly)

max
xi

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

Cournot: assume each can affect π by choice of xi

Inverse demand p(q): π = p(q) ⇐⇒ q = d(π)

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, π = 29/3

Exercise of market power (some price takers, some Cournot, even
Stackleberg)
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Computational issue: PATH

Cournot model: |A| = 5

Size n = |A| ∗ Na

Size (n) Time (secs)

1,000 35.4
2,500 294.8
5,000 1024.6
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nz = 10403
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n = 100, Na = 20

Ferris (Univ. Wisconsin) Equilibrium and Energy Economics Supported by DOE/ARPA-E 11 / 31



Computation: implicit functions and local variables

Use implicit fn: z(x) =
∑

j xj
(and local aggregation)

Generalization to F (z , x) = 0 (via
adjoints)

empinfo: implicit z F

Size (n) Time (secs)

1,000 0.5
2,500 0.8
5,000 1.6

10,000 3.9
25,000 17.7
50,000 52.3

0 20 40 60 80 100
nz = 333

0

20
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Jacobian nonzero pattern
n = 100, Na = 20
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A Simple Network Model

Load segments s
represent electrical load
at various instances

d s
n Demand at node n in

load segment s (MWe)

X s
i Generation by unit i

(MWe)

F s
L Net electricity

transmission on link L
(MWe)

Y s
n Net supply at node n

(MWe)

πsn Wholesale price ($ per
MWhe)

n1

n2

n3

n13

n14n15

n16

n4n5 n6

n7

n8

n9n10

n11n12

GCSWQLD

VIC

1989

1601

1875

2430 3418

3645

6866

4860

2478

6528

1487

2560915
2435

1830
2309

915
9151887

1887

2917

1930

180

1097

1930
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Nodes n, load segments s, generators i , Ψ is node-generator map

max
X ,F ,d ,Y

∑
s

(
W (d s(λs))−

∑
i

ci (X
s
i )

)
s.t. Ψ(X s)− d s(λs) = Y s

0 ≤ X s
i ≤ X i , G i ≥

∑
s

X s
i

Y ∈ X

where the network is described using:

X =

{
Y : ∃F ,F s = HY s ,−F s ≤ F s ≤ F

s
,
∑
n

Y s
n ≥ 0,∀s

}

Key issue: decompose. Introduce multiplier πs on supply demand
constraint (and use λs := πs)

How different approximations of X affect the overall solution
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Case H: Loop flow model

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Let A be the node-arc incidence matrix, H be the shift matrix, L be the
loop constraint matrix. Standard results show:

X = {Y : ∃F ,F = HY ,F ∈ F}

X =
{
Y : ∃(F , θ),Y = AF ,BAT θ = F , θ ∈ Θ,F ∈ F

}
X = {Y : ∃F ,Y = AF ,LF = 0,F ∈ F}
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Loopflow model (using A,L)

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Network model
Drop loop constraints:

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Comparing Network and Loopflow: Demand
Here we look at simulations which impose a proportional reduction in
transmission across the network. The network and loopflow models
demonstrate similar responses:
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Comparing Network and Loopflow: Generation
Likewise, generation is similar in the two models:
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Comparing Network and Loopflow: Transmission
Network transmission levels reveal that the two models are quite different:
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The Game: update red, blue and purple components

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Top down/bottom up

λs = πs so use complementarity to expose (EMP: dualvar)

Change interaction via new price mechanisms

All network constraints encapsulated in (bottom up) NLP (or its
approximation by dropping LF s = 0):

max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

Could instead use the NLP over Y with H
Clear how to instrument different behavior or different policies in
interactions (e.g. Cournot, etc) within EMP

Can add additional detail into top level economic model describing
consumers and producers

Can solve iteratively using SELKIE
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Pricing
Our implementation of the heterogeneous demand model incorporates
three alternative pricing rules. The first is average cost pricing, defined by

Pacp =

∑
jn∈Racp

∑
s pjnsqjns∑

jn∈Racp

∑
s qjns

The second is time of use pricing, defined by:

Ptou
s =

∑
jn∈Rtou

pjnsqjns∑
jn∈Rtou

qjns

The third is location marginal pricing corresponding to the wholesale
prices denoted Pns above. Prices for individual demand segments are then
assigned:

pjns =


Pacp (jn) ∈ Racp

Ptou
s (jn) ∈ Rtou

Pns (jn) ∈ Rlmp
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Smart Metering Lowers the Cost of Congestion
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Other specializations and extensions

min
xi
θi (xi , x−i , z(xi , x−i ), π) s.t. gi (xi , x−i , z , π) ≤ 0, ∀i , f (x , z , π) = 0

π solves VI(h(x , ·),C )

NE: Nash equilibrium (no VI coupling constraints, gi (xi ) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(xi , x−i ) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment

Ferris (Univ. Wisconsin) Equilibrium and Energy Economics Supported by DOE/ARPA-E 26 / 31



Economic Application

Model is a partial equilibrium, geographic exchange model.

Goods are distinguished by region of origin.

There is one unit of region r goods.

These goods may be consumed in region r or they may be exported.

Each region solves:

min
X ,Tr

fr (X ,T ) s.t. H(X ,T ) = 0, Tj = T̄j , j 6= r

where fr (X ,T ) is a quadratic form and H(X ,T ) defines X uniquely
as a function of T , the taxes and tariffs.

H(X ,T ) defines an equilibrium; here it is simply a set of equations,
not a complementarity problem

Applications: Brexit, modified GATT, Russian Sanctions
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Model statistics and performance comparison of the EPEC

MCP statistics according to the shared variable formulation

Replication Switching Substitution

12,144 rows/cols 6,578 rows/cols 129,030 rows/cols
544,019 non-zeros 444,243 non-zeros 3,561,521 non-zeros

0.37% dense 1.03% dense 0.02% dense

PATH Shared variable formulation (major, time)
crash spacer prox Replication Switching Substitution

X X 7 iters 20 iters 20 iters
8 secs 22 secs 406 secs

X 24 iters 22 iters 21 iters
376 secs 19 secs 395 secs

X 8 iters 8 iters 8 iters
28 secs 18 secs 219 secs
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Results

Gauss-Seidel residuals
Iteration deviation

1 3.14930
2 0.90970
3 0.14224
4 0.02285
5 0.00373
6 0.00061
7 0.00010
8 0.00002
9 0.00000

Tariff revenue
region SysOpt MOPEC

1 0.117 0.012
2 0.517 0.407
3 0.496 0.214
4 0.517 0.407
5 0.117 0.012

Note that competitive solution produces much less revenue than
system optimal solution

Model has non-convex objective, but each subproblem is solved
globally (lindoglobal)
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

dualvar (use multipliers from one agent as variables for another)

QS functions (both in objectives and constraints)

implicit functions and shared constraints

Currently available within GAMS

Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

Can evaluate effects of regulations and their implementation in a
competitive environment
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Conclusions

Showed equilibrium problems built from interacting optimization
problems

Equilibrium problems can be formulated naturally and modeler can
specify who controls what

It’s available (in GAMS)

Allows use and control of dual variables / prices

MOPEC facilitates easy “behavior” description at model level

Enables modelers to convey simple structures to algorithms and
allows algorithms to exploit this

New decomposition algorithms available to modeler (Gauss Seidel,
Randomized Sweeps, Gauss Southwell, Grouping of subproblems)

Can evaluate effects of regulations and their implementation in a
competitive environment

Stochastic equilibria - clearing the market in each scenario

Ability to trade risk using contracts
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0i − ui + h1i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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Decomposition by prices π

max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

+ πT

∑
i∈H

Ui (ui ) +
∑
j∈T

vj −
∑
k∈K

dk


s.t. xi = x0i − ui + h1i , i ∈ H

Problem then decouples into multiple optimizations∑
k∈K

max
dk≥0

(Wk (dk)− πTdk) +
∑
j∈T

max
vj≥0

(πT vj − Cj(vj))

+
∑
i∈H

max
ui ,xi≥0

(πTUi (ui ) + Vi (xi ))

s.t. xi = x0i − ui + h1i
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SO equivalent to CE (price takers)

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: Consumers k ∈ K solve CP(k) : max
dk≥0

Wk (dk)− πTdk

Thermal plants j ∈ T solve TP(j) : max
vj≥0

πT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i) : max
ui ,xi≥0

πTUi (ui ) + Vi (xi )

s.t. xi = x0i − ui + h1i

0 ≤ π ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .

But in practice there is a gap between SO and CE. How to explain?
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Stochastic: Agents have recourse?

Agents face uncertainties in reservoir inflows

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

ρ is a risk measure (e.g. expectation, CVaR)

SP: min c(x1) + ρ[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 
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Risk Measures

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, mean deviations from quantiles, VaR, CVaR

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Two stage stochastic MOPEC (1,1,1)

CP: min
d1

,d2
ω

≥0
p1d1 −W (d1)

+ ρC
[
p2ωd

2
ω −W (d2

ω)
]

TP: min
v1

,v2
ω

≥0
C (v1)− p1v1

+ ρT
[
C (v2ω)− p2ωv

2(ω)
]

HP: min
u1,x1≥0

u2ω ,x
2
ω≥0

− p1U(u1)

+ ρH
[
−p2(ω)U(u2ω)− V (x2ω)

]

s.t. x1 = x0 − u1 + h1,

x2ω = x1 − u2ω + h2ω

0 ≤ p1 ⊥ U(u1) + v1 ≥ d1

0 ≤ p2ω ⊥ U(u2ω) + v2ω ≥ d2
ω,∀ω
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0

1

2

3

44

5

6

7

8

9

10

Single hydro, thermal and
representative consumer

Initial storage 10, inflow of 4 to 0,
equal prob random inflows of i to
node i

Risk neutral: SO equivalent to CE
(key point is that each risk set is a
singleton, and that is the same as
the system risk set)

Each agent has its own risk
measure, e.g. 0.8EV + 0.2CVaR

Is there a system risk measure?

Is there a system optimization
problem?

min
∑
i

C (x1i ) + ρi
(
C (x2i (ω))

)
????
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Equilibrium or optimization?

Theorem

If (d , v , u, x) solves (risk averse) SO, then there exists a probability
distribution σk and prices p so that (d , v , u, x , p) solves (risk neutral)
CE(σ)

(Observe that each agent must maximize their own expected profit using
probabilities σk that are derived from identifying the worst outcomes as
measured by SO. These will correspond to the worst outcomes for each
agent only under very special circumstances)

High initial storage level (15 units)
I Worst case scenario is 1: lowest system cost, smallest profit for hydro
I SO equivalent to CE

Low initial storage level (10 units)
I Different worst case scenarios
I SO different to CE (for large range of demand elasticities)

Attempt to construct agreement on what would be the worst-case
outcome by trading risk

Ferris (Univ. Wisconsin) Equilibrium and Energy Economics Supported by DOE/ARPA-E 9 / 21



Contracts in MOPEC (Philpott/F./Wets)

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Trading risk: pay σω now, deliver 1 later in ω

CP: min
d1,d2

ω≥0

,tC
σtC +

p1d1 −W (d1) + ρC

[
p2ωd

2
ω −W (d2

ω)

− tCω

]
TP: min

v1,v2
ω≥0

,tT
σtT +

C (v1)− p1v1 + ρT

[
C (v2ω)− p2ωv

2(ω)

− tTω

]
HP: min

u1,x1≥0
u2ω ,x

2
ω≥0

,tH

σtH

− p1U(u1) + ρH

[
−p2(ω)U(u2ω)− V (x2ω)

− tHω

]
s.t. x1 = x0 − u1 + h1,

x2ω = x1 − u2ω + h2ω

0 ≤ p1 ⊥ U(u1) + v1 ≥ d1

0 ≤ p2ω ⊥ U(u2ω) + v2ω ≥ d2
ω,∀ω

0 ≤ σω ⊥ tCω + tTω + tHω ≥ 0,∀ω σ = (σω)
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Theory and Observations

agent problems are multistage stochastic optimization models

perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

situation complicated when agents are risk averse
I utilize stochastic process over scenario tree
I under mild conditions a social optimum corresponds to a competitive

market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

Otherwise, must solve the stochastic equilibrium problem

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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MCP size of equilibrium problems containing shared
variables by formulation strategy

Strategy Size of the MCP

replication (n + 2mN)
switching (n + mN + m)

substitution (explicit) (n + m)
substitution (implicit) (n + nm + m)

Fi (z) =

∇xi fi (x , y)− (∇xiH(y , x))µi
∇yi fi (x , y)− (∇yiH(y , x))µi

H(yi , x)

 , zi =

xiyi
µi

 .
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Spacer steps

Given (x , y , µ) during iterations

Compute a unique feasible pair (ỹ , µ̃)

Evaluate the residual at (x , ỹ , µ̃)

Choose the point if it has less residual than the one of (x , y , µ)
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Reserves, interruptible load, demand response

Generators set aside capacity for “contingencies” (reserves)

Separate energy πd and reserve πr prices

Consumers may also be able to reduce consumption for short periods

Alternative to sharp price increases during peak periods

Constraints linking energy “bids” and reserve “bids”

vj + uj ≤ Uj , uj ≤ Bjvj

Multiple scenarios - linking constraints on bids require “bid curve to
be monotone”
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Price taking: model is MOPEC

Consumption dk , demand response rk , energy vj , reserves uj , prices π

Consumer max
(dk ,rk )∈C

utility(dk)− πdTdk + profit(rk , πr )

Generator max
(vj ,uj )∈G

profit(vj , πd) + profit(uj , πr )

s.t. vj + uj ≤ Uj , uj ≤ Bjvj
Transmission max

f ∈F
congestion rates(f , πd)

Market clearing

0 ≤ πd ⊥
∑
j

vj −
∑
k

dk −Af ≥ 0

0 ≤ πr ⊥
∑
j

uj +
∑
k

rk −R ≥ 0
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Large consumer is price making: MPEC

Leader/follower

Consumer max utility(dk)− πdTdk + profit(rk , πr )

with the constraints:

(dk , rk) ∈ C
Generator max

(vj ,uj )∈G′
profit(vj , πd) + profit(uj , πr )

Transmission max
f ∈F

congestion rates(f , πd)

0 ≤ πd ⊥
∑
j

vj −
∑
k

dk −Af ≥ 0

0 ≤ πr ⊥
∑
j

uj +
∑
k

rk −R ≥ 0
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Solution and observations

Formulate as MIP, add mononticity constraints and scenarios

New Zealand (NZEM) data, large consumer at bottom of South Island

Expected difference percentage between “wait and see” solutions
versus model solution (evaluated post optimality with simulation)

Sample Size 1 2 4 6 8

Expected diff 31.34 17.83 9.22 7.35 9.26
Standard dev 22.86 9.62 4.86 7.69 6.59
Bound gap (%) 0 0 0 12.7 24.8

More samples better(!)

More research to model/solve more detailed problems
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Dual Representation of Risk Measures

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
µ∈D

Eµ[Z ]

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {λ : 0 ≤ λi ≤ pi/(1− α),
∑

i λi = 1}, then

ρ(Z ) = CVaRα(Z )

Special case of a Quadratic Support Function

ρ(y) = sup
u∈U
〈u,By + b〉 − 1

2
〈u,Mu〉

EMP allows any Quadratic Support Function to be defined and
facilitates a model transformation to a tractable form for solution
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Addition: compose equilibria with QS functions

Add soft penalties to objectives
and/or within constraints:

min
x
θ(x) + ρO(F (x))

s.t. ρC (g(x)) ≤ 0

QS g rhoC udef B M

...

QSF cvarup F rhoO theta p

$batinclude QSprimal modname
using emp min obj

Allow modeler to compose QS
functions automatically

Can solve using MCP or primal
reformulations

More general conjugate
functions also possible:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1

2

3

4

5

6

7

8

su
p

R
+

x
y
+

1
+
ln

(1
−
y)

barrier penalty: x− ln(x)− 1
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The link to MOPEC

min
x∈X

θ(x) + ρ(F (x))

ρ(y) = sup
u∈U
〈u, y〉 − 1

2
〈u,Mu〉

0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

0 ∈ ∂θ(x) +∇F (x)Tu + NX (x)

0 ∈−u + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + Mu + NU(u)

This is a MOPEC, and we have multiple copies of this for each agent
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