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Complementarity Systems
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Generalized Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

(GE) is equivalent to

0 = F (PT (x)) + x − PT (x)

and the “path following” algorithm can be defined similarly to the
variational inequality case.

Ferris (Univ. Wisconsin) EMP Nonsmooth School, June 2010 3 / 42



Optimal Yacht Rig Design

Current mast design trends use
a large primary spar that is
supported laterally by a set of
tension and compression
members, generally termed the
rig

Reduction in either the weight
of the rig or the height of the
VCG will improve performance

Design must work well under a
variety of weather conditions

Optimal Yacht Rig Design
• Current mast design 

trends use a large 
primary spar that is 
supported laterally by a 
set of tension and 
compression members, 
generally termed the rig

• Reduction in either the 
weight of the rig or the 
height of the VCG will 
improve performance
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Complementarity feature

Stays are tension only
members (in practice) -
Hookes Law

When tensile load becomes
zero, the stay goes slack
(low material stiffness)

0 ≥ s ⊥ s − kδ ≤ 0
I s axial load
I k member spring constant
I δ member extension

Either si = 0 or si = kδi

Complementarity Feature

• Stays are tension-
only members (in 
practice) – Hookes
Law

• When tensile load 
becomes zero, the 
stay goes slack (low 
material stiffness)

s: axial load
k: member spring constant
dl: member length extension
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MPCC: complementarity constraints

min
x ,s

f (x , s)

s.t. g(x , s) ≤ 0,
0 ≤ s ⊥ h(x , s) ≥ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models complementarity, disjunctions

Complementarity “⊥” constraints available in AIMMS, AMPL and
GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software
I Problems solvable, local solutions, hard
I Southern Spars Company (NZ): improved from 5-0 to 5-2 in America’s

Cup!
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How to use it?

Download “gams” system: google “download gams distribution”

Evaluation license provided for “full versions” of PATH, CONOPT,
MINOS, MOSEK, NLPEC, MILES, EMP

License files available at:
http://www.cs.wisc.edu/∼ferris/windows.txt
or
http://www.cs.wisc.edu/∼ferris/linux.txt
or
http://www.cs.wisc.edu/∼ferris/mac.txt
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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give three examples of this: disjunctive programming, bilevel
programming and multi-agent competitive models

Ferris (Univ. Wisconsin) EMP Nonsmooth School, June 2010 8 / 42



EMP(i): constraint logic

Sequencing Example to minimize makespan:

seq(i,j): start(i) + wait(i,j) ≤ start(j)

for each pair (i 6= j), either i before j or j before i

empinfo: disjunction * seq(i,j) else seq(j,i)

i.e. write down all seq equations, only enforce one of every pair

EMP options facilitate either Big M reformulation, or Convex Hull
reformulation (Grossmann et al), or CPLEX indicator reformulation

Other logic constructs available
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LogMip: Generalized disjunctive programming
Generalized Disjunctive Programming (GDP)
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• Raman and Grossmann (1994)  

Objective Function

Common Constraints

Disjunction

Fixed Charges

Continuous Variables

Boolean Variables

Logic Propositions

OR operator Constraints

Relaxation?
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Transmission switching

Opening lines in a transmission network can reduce cost
But that is infeasibleBut that is infeasibleBut that is infeasible…But that is infeasible…

Capacity limit: 100 MW
$20/MWh

200 MW generated

133 MW

200 MW load

67 MW

200 MW load

$40/MWh

9

(a) Infeasible due to line capacity

A feasible dispatchA feasible dispatchA feasible dispatchA feasible dispatch
Total Cost:  $20/MWh x 100 MWh          

+$40/MWh x 100 = $6 000/h

Capacity limit: 100 MW
$20/MWh

100 MW generated
+$40/MWh x 100  $6,000/h

67 MW

200 MW l d
33MW

100 MW 
generated

33MW

200 MW load

$40/MWh

g

67 MW$40/MWh 67 MW

10

(b) Feasible dispatch

Need to use expensive generator due to power flow characteristics and
capacity limit on transmission line
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The basic model

ming ,f ,θ cTg generation cost
s.t. g − d = Af , f = BAT θ A is node-arc incidence

θ̄L ≤ θ ≤ θ̄U bus angle constraints
ḡL ≤ g ≤ ḡU generator capacities
f̄L ≤ f ≤ f̄U transmission capacities

with transmission switching (within a smart grid technology) we modify as:

ming ,f ,θ cTg
s.t. g − d = Af

θ̄L ≤ θ ≤ θ̄U
ḡL ≤ g ≤ ḡU

either fi = (BAT θ)i , f̄L,i ≤ fi ≤ f̄U,i if i closed
or fi = 0 if i open

Use EMP to facilitate the disjunctive constraints (several equivalent
formulations, including LPEC)
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Example: Robust Linear Programming

Data in LP not known with certainty:

min cT x s.t. aT
i x ≤ bi , i = 1, 2, . . . ,m

Suppose the vectors ai are known to be lie in the ellipsoids

ai ∈ εi := {āi + Piu : ‖u‖2 ≤ 1}

where Pi ∈ Rn×n (and could be singular, or even 0).
Conservative approach: robust linear program

min cT x s.t. aT
i x ≤ bi , for all ai ∈ εi , i = 1, 2, . . . ,m
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Robust Linear Programming as SOCP/ENLP

The constraints can be rewritten as:

bi ≥ sup
{

aT
i x : ai ∈ εi

}
= āT

i x + sup
{

uTPT
i x : ‖u‖2 ≤ 1

}
= āT

i x +
∥∥∥PT

i x
∥∥∥

2

Thus the robust linear program can be written as

min cT x s.t. āT
i x +

∥∥∥PT
i x
∥∥∥

2
≤ bi , i = 1, 2, . . . ,m

min cT x +
m∑

i=1

ψC (bi − āT
i x ,PT

i x)

where C represents the second-order cone. Our extension allows automatic
reformulation and solution (as SOCP) by Mosek or Conopt.
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EMP(ii): Extended nonlinear programs

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

Examples of different θ

least squares, absolute value, Huber function
Solution reformulations are very different
Huber function used in robust statistics.
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More general θ functions

In general any piecewise linear penalty function can be used: (different
upside/downside costs).
General form:

θ(u) = sup
y∈Y
{yTu − k(y)}

First order conditions for optimality are an MCP!
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ENLP (Rockafellar): Primal problem

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

“Classical” problem:

min
x1,x2,x3

exp(x1)

s.t. log(x1) = 1
x2
2 ≤ 2

x1/x2 = log(x3), 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

Soft penalization of red constraints:

min
x1,x2,x3

exp(x1)+5 ‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. x1/x2 = log(x3), 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0
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ENLP: Primal problem

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

X =
{
x ∈ R3 : 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

}
f1(x) = log(x1)− 1, f2(x) = x2

2 − 2, f3(x) = x1/x2 − log(x3)

θ1(u) = 5 ‖u‖2 , θ2(u) = 2 max(u, 0), θ3(u) = ψ{0}(u)

θ nonsmooth due to the max term; θ separable in example.
θ is always convex.
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Specific choices of k and Y

θ(u) = sup
y∈Y
{y ′u − k(y)}

L2: k(y) = 1
4λy2, Y = (−∞,+∞)

L1: k(y) = 0, Y = [−ρ, ρ]

L∞: k(y) = 0, Y = ∆, unit simplex

Huber: k(y) = 1
4λy2, Y = [−ρ, ρ]

Second order cone constraint: k(y) = 0, Y = C ◦
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Elegant Duality

For these θ (defined by k(·),Y ), duality is derived from the Lagrangian:

L(x , y) = f0(x) +
∑m

i=1 yi fi (x)− k(y)

x ∈ X , y ∈ Y

Dual variables in Y not simply ≥ 0 or free.

Saddle point theory, under convexity.

Dual Problem and Complete Theory.

Special case: ELQP - dual problem is also an ELQP.
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Implementation: convert tool

e1.. obj =e= exp(x1);
e2.. log(x1)-1 =e= 0;
e3.. sqr(x2)-2 =e= 0;
e4.. x1/x2 =e= log(x3);
e5.. 3*x1 + x2 =l= 5;

$onecho > emp.info
strategy mcp
adjustequ
e2 sqr 5
e3 maxz 2
$offecho

solve mod using emp min obj;
Library of different θ functions implemented.
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First order conditions

Solution via reformulation. One way:

0 ∈ ∇xL(x , y) + NX (x)
0 ∈ −∇yL(x , y) + NY (y)

NX (x) is the normal cone to the closed convex set X at x .

Automatically creates an MCP (or a VI)

Already available!

To do: extend X and Y beyond simple bound sets.
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Alternative Reformulations

Convert does symbolic/numeric reformulations. Alternative NLP
formulations also possible.

k(y) =
1

2
y ′Qy , X = {x : Rx ≤ r} , Y =

{
y : S ′y ≤ s

}
Defining

Q = DJ−1D ′, F (x) = (f1(x), . . . , fm(x))

min f0(x) + s ′z + 1
2wJw

s.t. Rx ≤ r , z ≥ 0,F (x)− Sz − Dw = 0

Can set up better (solver) specific formulation.
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EMP(iii): Variational inequalities

Find z ∈ C such that

〈F (z), y − z〉 ≥ 0, ∀y ∈ C

Many applications where F is not the derivative of some f

model vi / F, g /;
empinfo: vifunc F z

Convert problem into complementarity problem by introducing
multipliers on representation of C

Can now do MPEC (as opposed to MPCC)!

Projection algorithms, robustness (evaluate F only at points in C )
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Bimatrix Games

AVI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have I and J pure strategies.

p and q (strategy probabilities) belong to unit simplex 4I and 4J

respectively.

Payoff matrices A ∈ RJ×I and B ∈ R I×J , where Aj ,i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

The expected profit for the first and the second players are qTAp and
pTBq respectively.

A Nash equilibrium is reached by the pair of strategies (p∗, q∗) if and
only if

p∗ ∈ arg min
p∈4I

〈Aq∗, p〉 and q∗ ∈ arg min
q∈4J

〈BTp∗, q〉
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Formulation using complemetarity

The optimality conditions for the above problems are:

−Aq∗ ∈ N4I
(p∗) and − BTp∗ ∈ N4J

(q∗)

Therefore the corresponding VI is affine and can be written as:

0 ∈
[

0 A
BT 0

] [
p
q

]
+ N4I×4J

(

[
p
q

]
). (1)
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EMP(iv): Embedded models
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vifunc H y dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vifunc H q

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Competing agent models

Competing agents (consumers)

Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention)
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The model details: Brown, Demarzo, Eaves
Each agent maximizes:

uh = −
∑

s

πs

(
κ−

∏
l

c
αh,l

h,s,l

)
Time 0:

dh,0,l = ch,0,l − eh,0,l ,
∑

l

p0,ldh,0,l +
∑
k

qkzh,k ≤ 0

Time 1:

dh,s,l = ch,s,l − eh,s,l −
∑
k

Ds,l ,k ∗ zh,k ,
∑

l

ps,,ldh,s,l ≤ 0

Additional constraints (complementarity) outside of control of agents:

0 ≤ −
∑
h

zh,k ⊥ qk ≥ 0

0 ≤ −
∑
h

dh,s,l ⊥ ps,l ≥ 0
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EMP(v): Heirarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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Biological Pathway Models

Opt knock (a bilevel program)
max bioengineering objective (through gene knockouts)
s.t. max cellular objective (over fluxes)

s.t. fixed substrate uptake
network stoichiometry
blocked reactions (from outer problem)

number of knockouts ≤ limit

Also prediction models of the form:

min
∑
i ,j

‖wi − vj‖

s.t. Sv = w

− v̄L ≤ v ≤ v̄U , wj = w̄j

Can be modeled as an SOCP.
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The overall scheme!

Collection of algebraic equations

Form a bilevel program via emp

EMP tool automatically creates the MPCC (model transformation)

NLPEC tool automatically creates (a series of) NLP models (model
transformation)

GAMS automatically rewrites NLP models for global solution via
BARON (model transformation)

Is this global? What’s the hitch?

Note that heirarchical structure is available to solvers for analysis or
utilization
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Large scale example: bioreactor

Challenge

Formulating an optimization problem that allows the estimation of the
dynamic changes in intracellular fluxes based on measured external
bioreactor concentrations.

Approach

Using existing constraint-based stoichiometric models of the cellular
metabolism to formulate a bilevel dynamic optimization problem.
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Bioreactor

Products  [P]
Substrates [S]Biomass [X]

Feed f

from: Rocky Mountain Laboratories, NIAID, NIH 

When feed then fed-batch,
else batch reactor.

constant environmental
conditions, such as

I temperature
I pH level
I pressure

run time: days

most industrial applications
with biological processes,
such as

I fermentation
I biochemical production
I pharmaceutical protein

production
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Dynamic model of a bioreactor

Assumptions: well stirred, one phase!
Biomass:

d [X ]

dt
= (µ− f

V
)[X ]

µ: growth rate
Product [P] or substrate [S] concentrations [C]:

d [C ]

dt
= q[C ][X ] + (f [C ]feed − f

V
[C ])

q[C ]: specific uptake or production rate of [C].
Volume V:

d [V ]

dt
= f
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Stoichiometric constraints

pyruvate

metabolite
metabolic �ux

The stochiometry of the cellular
metabolism is described by a
stoichiometric matrix S .
S constrains steady-state flux
distributions.

S · v = 0

The above relation can be used in a
linear programming problem, which
maximizes for a cellular objective
function
(flux balance analysis).
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Dynamic optimization
Approach:
The different timescales of the metabolism (fast) and the reactor growth
(slow), allows to assume steady-state for the metabolism.

minimize / maximize  Objective (eg. parameter �tting)

s. t.

s. t.

bioreactor dynamics 

maximize  growth rate

stoichiometric constraints

�ux constraints

constraints on exchange �uxes

Different mathematical programming techniques are used to transform the
problem to a nonlinear program. The differential equations are
transformed into nonlinear constraints using collocation methods.
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time

Outer problem (reactor dynamics)
co

nc
en

tr
at

io
ns

Different mathematical programming techniques are used to transform the
problem to a nonlinear program. The differential equations are
transformed into nonlinear constraints using collocation methods.
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CVaR constraints: mean excess dose (radiotherapy)
VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

Move mean of tail to the left!
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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