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Transportation Model

Suppliers ship good from warehouses to customers
I Satisfy demand for commodity
I Minimize transportation cost

Transportation network provided as set A of arcs

Variables xi ,j - amount shipped over (i , j) ∈ A
Parameters

I si - supply at node i
I di - demand at node i
I ci,j - cost to ship good from nodes i to j
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Linear Program

minx≥0
∑

(i ,j)∈A ci ,jxi ,j

subject to
∑

j :(i ,j)∈A xi ,j ≤ si ∀ i∑
i :(i ,j)∈A xi ,j ≥ dj ∀ j
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Multipliers

Introduce multipliers (marginal prices) ps and pd∑
j :(i ,j)∈A xi ,j ≤ si ps

i ≥ 0

In a competitive marketplace∑
j :(i ,j)∈A xi ,j < si ⇒ ps

i = 0

At solution ∑
j :(i ,j)∈A xi ,j = si or ps

i = 0

Complementarity relationship∑
j :(i ,j)∈A xi ,j ≤ si ⊥ ps

i ≥ 0
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Wardropian Equilibrium

Delivery cost exceeds market price

ps
i + ci ,j ≥ pd

j

Strict inequality implies no shipment xi ,j = 0

Linear complementarity problem∑
j :(i ,j)∈A xi ,j ≤ si ⊥ ps

i ≥ 0 ∀ i

dj ≤
∑

i :(i ,j)∈A xi ,j ⊥ pd
i ≥ 0 ∀ j

pd
j ≤ ps

i + ci ,j ⊥ xi ,j ≥ 0 ∀ (i , j) ∈ A

• First order conditions for linear program
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Nonlinear Complementarity Problems

Given F : <n → <n

Find x ∈ <n such that

0 ≤ F (x) x ≥ 0

xTF (x) = 0

Compactly written
0 ≤ F (x) ⊥ x ≥ 0

Equivalent to nonsmooth equation:

min(x ,F (x)) = 0
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Extensions

Original problem has fixed demand

Use general demand function d(p)

Examples
I Linear demand ∑

i :(i,j)∈A

xi,j ≥ dj(1− pd
j )

I Nonlinear demand
F Cobb-Douglas
F CES function

Use more general cost functions c(x)

Ferris (Univ. Wisconsi) EMP Aussois, June 2010 9 / 63



Taxes and Tariffs

Exogenous supply tax ti

ps
i (1 + ti ) + ci ,j ≥ pd

j

Endogenous taxes
I Make ti a variable
I Add driving equation

No longer optimality conditions

Most complementarity problems do not correspond to first
order conditions of optimization problems
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Use of complementarity

Pricing electricity markets and options

Contact Problems with Friction
Video games: model contact problems

I Friction only occurs if bodies are in contact

Crack Propagation
Structure design

I how springy is concrete
I optimal sailboat rig design

Congestion in Networks
Computer/traffic networks

I The price of anarchy measures difference between “system optimal”
(MPCC) and “individual optimization” (MCP)

Electricity Market Deregulation

Game Theory (Nash Equilibria)

General Equilibria with Incomplete Markets

Impact of Environmental Policy Reform
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World Dairy Market Model

Spatial equilibrium model of world dairy sector
I 5 farm milk types
I 8 processed goods
I 21 regions

Regions trade raw and processed goods

Barriers to free trade
I Import policies: quotas, tariffs
I Export policies: subsidies

• Study impact of policy decisions
I GATT/URAA
I Future trade negotiations
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Formulation

Quadratic program
I Variables: quantities
I Constraints: production and transportation
I Objective: maximize net social welfare

• Difficulty is ad valorem tariffs
I Tariff based on value of goods
I Market value is multiplier on constraint

• Complementarity problem
I Formulate optimality conditions
I Market price is now a variable
I Directly model ad valorem tariffs
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World Dairy Market Model Statistics

Quadratic program
I 31,772 variables
I 14,118 constraints

Linear complementarity problem
I 45,890 variables and constraints
I 131,831 nonzeros
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European Put Option

Contract where holder can sell an asset
1 At a fixed expiration time T
2 For a fixed price E

Asset value S(t) satisfies

dS = (σ dX + µ dt)S

I σ dX is random return
I µ dt is deterministic return

Black-Scholes Equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0
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American Put Options

Contract where holder can sell an asset
1 At any time prior to a fixed expiration T
2 For a fixed price E

Free Boundary Sf (t) – optimal exercise price

V (Sf (t), t) = max(E − Sf (t), 0)

∂V

∂S
(Sf (t), t) = −1

If S ≥ Sf (t) then satisfy Black-Scholes Equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0
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Complementarity Problem

Reformulate to remove dependence on boundary

Partial differential complementarity problem

F (S , t) ≡ ∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + rS ∂V
∂S − rV

0 ≤ −F (S , t) ⊥ V (S , t) ≥ max(E − S , 0)

Free boundary recovered after solving
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Solution Method

Finite differences used to discretize
I Central differences for space
I Forward differences for time
I Crank-Nicolson method

Step through time from T to present

At each t a linear complementarity problem is solved

Used GAMS/PATH to model and solve
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Results
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Background

Nonlinear equations F (x) = 0

Newton’s Method

F (xk) +∇F (xk)dk = 0

xk+1 = xk + dk

Damp using Armijo linesearch on 1
2 ‖F (x)‖22

Descent direction - gradient of merit function

Properties
I Well defined
I Global and local-fast convergence
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Cycling Example
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Merit Function
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Normal Map

Equivalent piecewise smooth equation F+(x) = 0

F+(x) ≡ F (x+) + x − x+

Nonsmooth Newton Method
I Piecewise linear system of equations
I Solve via a pivotal method
I Damp using Armijo search on 1

2 ‖F+(x)‖22
Properties

I Global and local-fast convergence
I Merit function not differentiable
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Nonlinear Complementarity Problem

Assume F+(x̄) = 0
1 If x̄i ≥ 0 then x̄i − (x̄i )+ = 0 and Fi (x̄) = 0
2 If x̄i ≤ 0 then x̄i − (x̄i )+ ≤ 0 and Fi (x̄) ≥ 0

Therefore x̄+ solves
0 ≤ F (x) x ≥ 0

xTF (x) = 0

Compact representation

0 ≤ F (x) ⊥ x ≥ 0

If z̄ solves NCP(F ) then F+(z̄ − F (z̄)) = 0
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Piecewise Linear Example
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Fischer-Burmeister Function

Φ(x) defined componentwise

Φi (x) ≡
√

(xi )2 + (Fi (x))2 − xi − Fi (x)

Φ(x) = 0 if and only if x solves NCP(F )

Not continuously differentiable - semismooth

Natural merit function (1
2 ‖Φ(x)‖22) is differentiable
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Fischer-Burmeister Example
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Review

Nonlinear Complementarity Problem

Piecewise smooth system of equations
I Use nonsmooth Newton Method
I Solve linear complementarity problem per iteration
I Merit function not differentiable

Fischer-Burmeister
I Differentiable merit function

Combine to obtain new algorithm
I Well defined
I Global and local-fast convergence
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Feasible Descent Framework

Calculate direction using a local method
I Generates feasible iterates
I Local fast convergence
I Used nonsmooth Newton Method

Accept direction if descent for 1
2 ‖Φ(x)‖2

Otherwise use projected gradient step
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Theorem

Let {xk} ⊆ <n be a sequence generated by the algorithm that has an
accumulation point x∗ which is a strongly regular solution of the NCP.
Then the entire sequence {xk} converges to this point, and the rate of
convergence is Q-superlinear.

Method is well defined

Accumulation points are stationary points

Locally projected gradient steps not used
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Computational Details

Crashing method to quickly identify basis

Nonmonotone search with watchdog

Perturbation scheme for rank deficiency

Stable interpolating pathsearch

Restart strategy

Projected gradient searches

Diagnostic information
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Restarts

User provides solver with information
I Starting point
I Resource limits

Effectively use resources to solve problem

Determine when at a stationary point and ‖Φ(x)‖ > 0
I Restart from starting point
I Modify algorithmic parameters

Parameter choices based on empirical studies
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Comparative Results

Models from GAMSLIB and MCPLIB

PATH 4.2

100%

95%

90%

85%
PATH 2.9

Success R
ate (1255 Instances)

PATH 3.2
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Preprocessing

Discover information about a problem

Use to reduce size and complexity
I Improve algorithm performance
I Detect unsolvable models

Main idea
I Identify special structure

F Polyhedral constraints
F Separability

I Use complementarity theory to eliminate variables
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Linear Solve

Majority of time spent finding direction

Advanced starts

Ill-conditioning and rank-deficiency

Degeneracy in pivot sequence

Cycling rules

Stable regeneration of search path
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Core Computation

Each step solves a (large, sparse) linear system

Pivot step updates system matrix by a rank-1 modification (see
details later)

Require factor, solve, update technology
I Dense version: uses Fletcher Matthews updates of LU factors
I Default version: uses LUSOL (Markovitz sparsity, Bartels Golub factor

updates, rank revealing factorization)
I New version: uses UMFPACK (unsymmetric multifrontal method,

block LU updating (Schur Complement) for updates)
I Compressed version: much more complicated to implement, not as

efficient in practice over complete set of models
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Availability

Modeling Languages
I GAMS
I AMPL

MATLAB
I MEX interface

NEOS
I FORTRAN specification
I ADIFOR to obtain Jacobian
I Large problems solved via CONDOR

Callable Library
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Conclusions

Complementarity generalizes nonlinear equations

Nonsmooth Newton method proposed
I Differentiable merit function
I Well defined
I Global and local-fast convergence

Developed sophisticated implementation

Applied to several problems
I Transportation model
I Options pricing

Future – improve speed and reliability
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Discussion

Very robust on standard test set

Obtained large, difficult models from colleagues
I World Dairy Market Model
I Several quadratic programs

Improve performance on large scale problems
I Robustness
I Speed
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Variational Inequality Formulation

F : <n → <n

Ideally: X ⊆ <n – constraint set

In practice: X ⊆ <n – simple bounds

0 ∈ F (x) + NX (x)

• Special Cases
I Nonlinear Equations (X ≡ <n)

F (x) = 0

I Nonlinear Complementarity Problem (X ≡ <n
+)

0 ≤ F (x) x ≥ 0

xTF (x) = 0
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Polyhedral Constraints X

X and NX (·) are geometric objects

Free to choose algebraic representation

Partition into two components: X ≡ B ∩ C
I B - simple bounds – treated specially by algorithm
I C - polyhedral set

Reduce complexity of C

Must find X automatically
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Polyhedral Structure

Partition variables into (x , y)

Identify skew symmetric structure

0 ∈
[

F (x)− AT y
Ax − b

]
+

[
N<n

+
(x)

N<n
+

(y)

]
• Equivalent polyhedral problem (Robinson)

0 ∈ F (x) + N<n
+∩{x |Ax−b≥0}(x)

Implementation finds a single constraint at a time
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Relationship

1. If (x̄ , ȳ) solves box constrained problem then x̄ solves the
polyhedral problem

2. If x̄ solves the polyhedral problem then there exist
multipliers ȳ such that (x̄ , ȳ) solves the box constrained
problem

How do we calculate the multipliers, ȳ?
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Calculating Multipliers

Given an x̄ solving the polyhedral problem

Choose ȳ solving the following linear program

miny∈<n
+

yT (Ax̄ − b)

s.t. 0 ∈ F (x̄)− AT y + N<n
+

(x̄)

If x̄ solves the polyhedral problem then

1. The linear program is solvable

2. Given any ȳ in the solution set, (x̄ , ȳ) solves the box
constrained problem
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Separable Structure

Partition variables into (x , y)

Identify separable structure

0 ∈
[

F (x)
G (x , y)

]
+

[
N<n

+
(x)

N<n
+

(y)

]
Reductions possible if either

1 0 ∈ F (x) + N<n
+

(x) has a unique solution
2 0 ∈ G (x , y) + N<n

+
(y) has solution for all x

Theory provides appropriate conditions

Solve F and G sequentially
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Presolve

1 Identify a constraint with skew symmetric property

2 Convert problem into polyhedral form
3 Modify representation of polyhedral set

I Singleton and doubleton rows
I Forcing constraints
I Duplicate rows

4 Recover box constrained problem with reduced size
I Multipliers fixed and function modified
I Additional polyhedral constraints uncovered

5. Repeat 1–4 until no changes

6. Identify separable structure
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Example

Original problem

0 ∈
[

x2−y − 1
x − 1

]
+

[
N<+(x)
N<+(y)

]
Polyhedral problem

0 ∈ x2 − 1 + N<+∩{x |x−1≥0}(x)

Equivalent problem

0 ∈ x2 − 1 + N[1,∞)(x)
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Example (continued)

0 ∈ x2 − 1 + N[1,∞)(x) has one solution x̄ = 1

Solve optimization problem

miny∈<+ yT (x̄ − 1)
s.t. 0 ∈ x̄2 − y − 1 + N<+(x̄)

Equivalent model
miny∈<+ 0

s.t. y = 0

Obtain ȳ = 0

Solution is (1, 0)
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Availability of Preprocessor

PATH 4.3 for GAMS and AMPL
I Finds polyhedral structure
I Exploits separable structure

Capability exists in other environments
I User needs to provide information
I Listing of linear/nonlinear elements in Jacobian
I Optional - interval evaluation routines
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Results: Linear Programs

Formulated first order conditions of NETLIB problems

Polyhedral structure not supplied to LCP preprocessor

R
eduction

20%

0%

10%

30%

CPLEX
(Without Aggregation)

LCP CPLEX

Ferris (Univ. Wisconsi) EMP Aussois, June 2010 50 / 63



Results: Quadratic Programs

Solve optimality conditions

Synthetic models
I NETLIB problems with 1

2 ‖x‖
2 added to objective

I Selected 8 models
I 17.6% reduction in size
I 29.2% reduction in time

World Dairy Market Model
I Failed on original model (4.5 hours)
I 70.4% reduction in size
I Solved preprocessed model 23 minutes
I 91.5% reduction in time!
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Results: Nonlinear Complementarity Problems

Models from GAMSLIB and MCPLIB

Selected 6 models

9.7% reduction in size

15.3% reduction in time
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World Dairy Market Model Statistics

Quadratic program
I 31,772 variables
I 14,118 constraints

Linear complementarity problem
I 45,890 variables and constraints
I 131,831 nonzeros

Preprocessed problem
I 22,159 variables and constraints
I 70,475 nonzeros
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World Dairy Market Model Results

Note: want to analyze large number of scenarios

Gauss-Seidel method
I Solves 96 quadratic programs

F Uses MINOS with nonstandard options

I Approximates equilibrium in 42 minutes

Complementarity formulation
I Solves a single complementarity problem
I Computes equilibrium in

F 117 minutes without preprocessing
F 21 minutes with preprocessing
F 11 minutes with nonstandard options

I Obtain more accurate result in less time!
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Normal map for polyhedral C

Normal Map 

projection: πC (x)

x − πC (x) ∈ NC (πC (x))

If −MπC (x)−q = x−πC (x) then

−MπC (x)− q ∈ NC (πC (x))

so z = πC (x) solves

〈−Mz − q, y − z〉 ≤ 0, ∀y ∈ C

Find x , a zero of the normal map:

0 = MπC (x) + q + x − πC (x)
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Normal manifold = {Fi + NFi
}
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C = {z |Bz ≥ b}, NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b}, NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b}, NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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Cao/Ferris Path (Eaves)

Start in cell that has interior
(face is an extreme point)

Move towards a zero of
affine map in cell

Update direction when hit
boundary (pivot)

Solves or determines
infeasible if M is
copositive-plus on rec(C )

Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear

Cao/Ferris Path (Eaves) 
•  Start in cell that has 

interior (face is an 
extreme point) 

•  Move towards a zero of 
affine map in cell 

•  Update direction when 
hit boundary 

•  Solves or determines 
infeasible if M is 
copositive-plus on rec(C) 

•  Nails 2-person game 

But algorithm has exponential complexity (von Stengel et al)
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Extensions and Computational Results

Embed AVI solver in a Newton Method - each Newton step solves an
AVI

Compare performance of PathAVI with PATH on equivalent LCP

PATH the most widely used code for solving MCP

AVIs constructed to have solution with Mn×n symmetric indefinite

PathAVI PATH
Size (m,n) Resid Iter Resid Iter

(180, 60) 3× 10−14 193 0.9 10176
(360, 120) 3× 10−14 1516 2.0 10594

2 - 10x speedup in Matlab using sparse LU instead of QR

2 - 10x speedup in C using sparse LU updates
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Conclusions

Complementarity problems abound in multiple application domains

The PATH solver is a large scale (black-box) implementation of a
(nonsmooth) Newton method for solving complementarity problems

The PATH solver is available for download at
http://www.cs.wisc.edu/∼ferris/path.html

Mathematically rigourous extensions to Variational Inequalities and
specific structures in models possible
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