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Abstract

While optimizers are familiar with complementary slackness within the
optimality conditions of linear and nonlinear programming, there are
numerous complementarity problems arising naturally in many practical
applications from engineering and economics. These include applied
general equilibrium modeling, traffic network design, structural engineering
and finance. Several examples will be outlined, together with an overview
of modern, practical modeling and solution techniques within this field.
Since complementarity allows for competition among players, optimization
problems that involve complementarity constraints, and models with
embedded complementarities are becoming increasingly important within
applications. We outline these new ideas, highlight several computational
schemes and explain their utility by application.
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Modeling languages: state-of-the-art

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements

Key link to applications, prototyping of optimization capability

Widely used in:
I engineering - operation/design
I economics - policy/energy modeling
I military - operations/planning
I finance, medical treatment, supply chain management, etc.

Interface to solutions: facilitates automatic differentiation, separation
of data, model and solver

Modeling languages no longer novel: typically represent another tool
for use within a solution process.
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World Bank Project (Uruguay Round)

24 regions, 22 commodities
I Nonlinear complementarity

problem
I Size: 2200 x 2200

Short term gains $53 billion p.a.
I Much smaller than previous

literature

Long term gains $188 billion p.a.
I Number of less developed

countries loose in short term

Unpopular conclusions - forced
concessions by World Bank

Application: Uruguay Round
• World Bank Project with 

Harrison and Rutherford
• 24 regions, 22 commodities

– 2200 x 2200 (nonlinear)
• Short term gains $53 billion p.a.

– Much smaller than previous 
literature

• Long term gains $188 billion p.a.
– Number of less developed 

countries loose in short term
• Unpopular conclusions – forced 

concessions by World Bank
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Modeling languages: an example

min cT x s.t. aT
i x ≤ bi , i = 1, 2, . . . ,m

set i, j; parameter b(i), c(j), A(i,j);

variables obj, x(j);
equations defobj, cons(i);

defobj.. obj =e= sum(j, c(j)*x(j));

cons(i).. sum(j, A(i,j)*x(j)) =l= b(i);

model lpmod /defobj, cons/;
solve lpmod using lp min obj;
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Modeling language limitations

Data (collection) remains bottleneck in many applications
I Tools interface to databases, spreadsheets, Matlab

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

I Support for integer, sos, semicontinuous variables
I Limited support for logical constructs
I Support for complementarity constraints

Optimization assumes you control the complete system
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Optimal Yacht Rig Design

Current mast design trends use
a large primary spar that is
supported laterally by a set of
tension and compression
members, generally termed the
rig

Reduction in either the weight
of the rig or the height of the
VCG will improve performance

Design must work well under a
variety of weather conditions

Optimal Yacht Rig Design
• Current mast design 

trends use a large 
primary spar that is 
supported laterally by a 
set of tension and 
compression members, 
generally termed the rig

• Reduction in either the 
weight of the rig or the 
height of the VCG will 
improve performance
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Complementarity feature

Stays are tension only
members (in practice) -
Hookes Law

When tensile load becomes
zero, the stay goes slack
(low material stiffness)

0 ≥ s ⊥ s − kδ ≤ 0
I s axial load
I k member spring constant
I δ member extension

Either si = 0 or si = kδi

Complementarity Feature

• Stays are tension-
only members (in 
practice) – Hookes
Law

• When tensile load 
becomes zero, the 
stay goes slack (low 
material stiffness)

s: axial load
k: member spring constant
dl: member length extension
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MPEC: complementarity constraints

min
x ,s

f (x , s)

s.t. g(x , s) ≤ 0,
0 ≥ s ⊥ h(x , s) ≤ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models “turning on/off” of Hooke’s Law

Complementarity “⊥” constraints available in AMPL and GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software

Southern Spars Company (NZ): improved from 5-0 to 5-2 in
America’s Cup!
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Use of complementarity

Pricing electricity markets and options

Video games: model contact problems (with friction)

Structure design - how springy is concrete?

Computer networks - the price of anarchy

What can we model via CP?

min (G (x),H(x)) ≤ y

min
(
F 1(x),F 2(x), . . . ,Fm(x)

)
= 0

kth-largest
(
F 1(x),F 2(x), . . . ,Fm(x)

)
= 0

Switch on/off: g(x)h(x) ≤ 0, h(x) ≥ 0
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So what’s my point?

Can solve practical models due to availability of good software

Design (optimization) under our control

Weather conditions treated via “scenarios”

Hookes Law turned on/off beyond control of designer

Complementarity facilitates modeling of competition, nonsmoothness
and “switching”

Large scale models involving complementarity now solvable

Do you (or should you) care?
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Walras meets Wardrop
Increasing 
Labor
Demand

Increasing

Housing

What is the effect on housing prices of increasing 
capacity on the red arcs?
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Features

We buy a house to “optimize” some measure
I Price driven by market
I We compete against each other

Driver’s choose routes to “optimize” travel time
I Choices affect congestion
I Your choice affects me!

Production processes are “optimized”

But the road designer does not control any of these!
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Simple AGE model

(P) : min
y≥0

cT y

s.t. Ay ≥ d (⊥ p ≥ 0)

(C ) : max
d≥0

u(d)

s.t. pTd ≤ I

In equilibrium, the optimal demand d from (C) will be the demand in
(P), and the sales price p in (C) will be the marginal price on
production from (P)

Complementarity conditions of (P) and (C) have both primal and
dual variables

Optimization models linked by variables and multipliers

Equilibrium problem solvable as a complementarity problem

Can add “other features” such as taxation, transportation, tolls.
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EMP: Embedded models

Model has the format:

min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly, particularly when multiple
optimization models present

Can do automatically - simply annotate equations

EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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The Hollywood perspective: beautiful mind

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

EMP reformulates automatically for appropriate solvers, e.g. forms
KKT conditions
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Models are correct and solvable

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Many applications

Discrete-Time Finite-State Stochastic Games

Ericson & Pakes (1995) model of dynamic competition in an
oligopolistic industry

I Advertising (Doraszelski & Markovich 2007)
I Capacity accumulation (Besanko & Doraszelski 2004,...)
I Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)
I Consumer learning (Ching 2002)
I Firm size distribution (Laincz & Rodrigues 2004)
I Learning by doing (Benkard 2004,...)
I Mergers (Berry & Pakes 1993, Gowrisankaran 1999)
I Network externalities (Jenkins et al 2004,...)
I Productivity growth (Laincz 2005)
I Technology adoption (Schivardi & Schneider 2005)
I International trade (Erdem & Tybout 2003)
I Finance (Goettler, Parlour & Rajan 2004,...).
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EMP: Other new types of constraints

range constraints L ≤ Ax − b ≤ U

robust programming (probability constraints, stochastics)

f (x , ξ) ≤ 0,∀ξ ∈ U

conic programming aT
i x − bi ∈ Ki

soft constraints

rewards and penalties

Some constraints can be reformulated easily, others not!
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CVaR constraints: mean excess dose (radiotherapy)
VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

Move mean of tail to the left!
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EMP: Extended nonlinear programs

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

Examples of different θ

least squares, absolute value, Huber function
Solution reformulations are very different
Huber function used in robust statistics.
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More general θ functions

In general any piecewise linear penalty function can be used: (different
upside/downside costs).
General form:

θ(u) = sup
y∈Y
{yTu − k(y)}

First order conditions for optimality are an MCP!
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EMP: Heirarchical models

Bilevel programs:

min
x ,y

f (x , y)

s.t. g(x , y) ≤ 0,
y solves min

s
v(x , s) s.t. h(x , s) ≤ 0

Model as:
model bilev /deff,defg,defv,defh/;
plus empinfo: bilevel y min v defh

EMP tool automatically creates the MPEC
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Conclusions

Large scale complementarity problems reliably solvable

Complementarity constraints within optimization problems

Extended Mathematical Programming available within a modeling
system

System can easily formulate and solve second order cone programs,
robust optimization, soft constraints via piecewise linear penalization
(with strong supporting theory)

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage of complementarity solvers
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