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Tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min
x
‖Ax − y‖2

Additional structure: Compressed sensing: sparse signal to account for y

min
x
‖Ax − y‖2

2 s.t. ‖x‖0 ≤ c

Regularized regression:

min
x
‖Ax − y‖2

2 + α ‖x‖1

Machine learning: SVM for classification

min
w ,ξ,γ

∑
i

ξi +
α

2
‖w‖2 s.t. D(Aw − γ1) ≥ 1− ξ

General model:
min
x∈X

E (x) + αS(x)

X are constraints, E measures “error” and S penalizes bad structure
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Image denoising (Wright)

Rudin-Osher-Fatemi (ROF) model (`2−TV). Given a domain Ω ⊂ R2 and
an observed image f : Ω→ R, seek a restored image u : Ω→ R that
preserves edges while removing noise. The regularized image u can
typically be stored more economically. Seek to “minimize” both

‖u − f ‖2 and

the total-variation (TV) norm
∫

Ω |∇u| dx
Use constrained formulations, or a weighting of the two objectives:

min
u

P(u) := ‖u − f ‖2
2 + α

∫
Ω
|∇u| dx

The minimizing u tends to have regions in which u is constant (∇u = 0).
More “cartoon-like” when α is large.
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Original, noisy, denoised (tol = 10−2, 10−4)

Figure: CAMERAMAN: original (left) and noisy (right)

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 19 / 34

Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 20 / 34
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Parameter estimation

Example (Crombach):

min
p

J(x(p)− x̄) s.t.
∂x

∂t
= D∆x + f (x , p), p ∈ P

Key points:

Constraints on parameter choice p ∈ P

Can solve using PDE constrained optimization. Huge literature in
applied mathematics. Key computational idea for optimization is that
of the adjoint operator

Can discretize/optimize, and then add L1 penalization to get “sparse”
(parameter) solution via nonlinear optimization

Extension to nonsmooth f - DVI, and MPEC, allows for switching
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Simulation Optimization

Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

Widely used in epidemiology, engineering design, manufacturing,
supply chain management, medical treatment and many other fields
(calibration, parameter tuning, inverse optimization)

min
p∈P

f (p) = E[F (p, ξ)],

The sample response function F (p, ξ)
I typically does not have a closed form, thus cannot provide gradient or

Hessian information
I is normally computationally expensive
I is affected by uncertain factors in simulation
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Design a coaxial antenna for hepatic tumor ablation

Ferris (Univ. Wisconsin) Why optimization May 2013 7 / 14



Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics) are used to generate the
electromagnetic (EM) radiation fields in liver given a particular design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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Computational results

Use of derivative free (surrogate) methods

Our approach only valid for small scale (≤ 30) design variables (but
the simulation may be very complex - black box)

Evaluations may be noisy:
I Application: Dielectric tissue properties varied within ±10% of average

properties to simulate the individual variation.
I Bayesian VNSP (variable number sample path) algorithm yields an

optimal design that is a 27.3% improvement over the original design
and is more robust in terms of lesion shape and efficiency.
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Network inference

Given prior
knowledge, select
paths, color nodes
and sign arcs to
explain as many hits
as possible

e.g. sign of a
relevant edge is
consistent with the
phenotypes of nodes
it connects

Can model (propositional) logic constraints in a mixed integer
program

Key issue is to determine objective
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Biological Hierarchical Models

I: Opt knock (a bilevel program)
max bioengineering objective (through gene knockouts)
s.t. max cellular objective (over fluxes)

s.t. fixed substrate uptake
network stoichiometry
blocked reactions (from outer problem)

number of knockouts ≤ limit

II: Bio-reactor dynamics:

minimize / maximize  Objective (eg. parameter �tting)

s. t.

s. t.

bioreactor dynamics 

maximize  growth rate

stoichiometric constraints

�ux constraints

constraints on exchange �uxes

Different mathematical
programming techniques are
used to transform the
problem to a nonlinear
program. The differential
equations are transformed
into nonlinear constraints
using collocation methods.
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Optimization of risk measures
Determine portfolio weights wj for each of a collection of assets

Asset returns v are random, but jointly distributed

Portfolio return r(w , v)

Value at Risk (VaR)
can be viewed as a
chance constraint
(hard):

CVaR gives rise to a
convex optimization
problem (easy)

Chance constraints (implemented using mixed integer programming):

min
x

cT x s.t. Pr(Ax ≤ b) ≥ π
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Example: Portfolio Model

Maximize the mean of the lower tail (mean tail loss):

max CVaRα(r)
s.t. r =

∑
j vj∗wj∑

j wj = 1, w ≥ 0

Jointly distributed random variables v , realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

Coherent risk measures E and CVaR (or convex combination)

Optimization modeling systems have new tools for sampling, risk
measures and solution of stochastic programs (ref: M. Loewe)

Classical: mean-variance model (Markowitz)

min wTΣw − q
∑

j vj∗wj∑
j wj = 1, w ≥ 0
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Conclusions

Optimization helps understand what drives a system

Constraints are a crucial design/modeling tool

Uncertainty is present everywhere: we need to
hedge/control/ameliorate it

Collections of, and interactions between, models are critical

Modern computational optimization tools can be very fast, deal with
large amounts of data and variables, address non-convex and discrete
issues, interact with dynamics
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