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Idea and implementation

Multiple agents interacting independently, along with shared resource

Farmers (planting and management, leeching, CO2)

Economy (supply, demand, money), Environment (bug index), Energy

Use in schools, undergraduate classes and group of Ag/Econ experts

Repeated game

Single player not interesting - introduce bots

Implement bots using GAMS
I Information in: same as a human player
I Key step: approximate other players actions/response function
I Different objectives
I Information out: planting and management decisions

Point your google chrome browser at: fieldsoffuel.org
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Aside: designing bots

Bots receive same information as human players (see graphs and help)

Only know own strategy

Different objectives (economy, energy, environment, combination)

Perennials: need history/look-ahead

Runoff and bug index: need neighbors strategies

Understand the economy/prices

Prediction model for next 5 periods

Solve multistage look-ahead MIP model (in real time)

Distributed solution, each bot can use multiple cores
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Alternative: the “big data” model

Collect states, and strategy decisions from real plays over time

Use “nearest neighbor” to identify a small set of “exemplars”
I Randomly select an action from a selected exemplar to perform
I Perform an averaged action from exemplar set (worse performance)

Test using cross validation and also deploy in real game

Good CV performance, not used in real game at this time

Can we use better schemes to exploit this accumulating data?

Data can be used to train a program to play like humans so that
humans can reason about outcomes of multiple bot-played games

Question: Can this be used to inform public policy decisions?
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(M)OPEC

min
x
θ(x , p) s.t. g(x , p) ≤ 0

0 ≤ p ⊥ h(x , p) ≥ 0

equilibrium

min theta x g

vi h p

x ⊥ ∇xθ(x , p) + λT∇xg(x , p)

0 ≤ λ ⊥ −g(x , p) ≥ 0

0 ≤ p ⊥ h(x , p) ≥ 0

Solved concurrently

Requires global solutions of agents problems (or theory to guarantee
KKT are equivalent)

Theory of existence, uniqueness and stability based in variational
analysis
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve
complementarity problem

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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General Equilibrium models

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT

∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

 s.t.
∑
l

pl = 1

(I ) :ik(y , p) = pTωk +
∑
j

αkjp
Tgj(yj)

This is an example of a MOPEC
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Special case: Nash Equilibrium

Non-cooperative game: collection of players a ∈ A whose individual
objectives depend not only on the selection of their own strategy
xa ∈ Ca = domθa(·, x−a) but also on the strategies selected by the
other players x−a = {xa : o ∈ A \ {a}}.
Nash Equilibrium Point:

x̄A = (x̄a, a ∈ A) : ∀a ∈ A : x̄a ∈ argminxa∈Ca
θa(xa, x̄−a).

1 for all a ∈ A, θa(·, x−a) is convex

2 C =
∏

a∈A Ca and for all a ∈ A, Ca is closed convex.
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VI reformulation

Define
G : RN 7→ RN by Ga(xA) = ∂aθa(xa, x−a), a ∈ A

where ∂a denotes the subgradient with respect to xa. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

xA ∈ C such that − G (xA) ∈ NC (xA)

is a Nash equilibrium point for the game.
Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Strongly Convex (Generalized) Nash Equilibria

min
x1≥0

1

2
x21 − θx1x2 − 4x1 s.t. x1 + x2 ≥ 1

min
x2≥0

1

2
x22 − x1x2 − 3x2

No solution for θ ≥ 1:

x1(x2) = (θx2 + 4)+, x2(x1) = (x1 + 3)+

Solution −4
3 ≤ θ < 1: x1 = 4+3θ

1−θ , x2 = x1 + 3

Solution θ ≤ −4
3 : x1 = 0, x2 = 3

Jacobi works provided θ < 1, but diagonal dominance theory fails
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Recast as a VI

M =

 1 −1 −θ
1 1

−1 1

 z =

x1λ
x2

 , q =

−4
−1
−3



0 ∈ Mz + q + NC (z) ⇐⇒ 0 ≤ Mz + q ⊥ z ≥ 0

Problem is not monotone (M not psd), so monotone operator
splitting not possible

New results (F/Rutherford/Wathen) show Jacobi/Gauss Seidel works
based on Feingold/Varga (1962)

M is an L-matrix, so Lemke method (PATH) solves the problem
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Extension to hierarchical models for policy analysis?

The latest GTAP database represents global production and trade for
113 country/regions, 57 commodities and 5 primary factors.

Data characterizes intermediate demand and bilateral trade in 2007,
including tax rates on imports/exports and other indirect taxes.

The core GTAP model is a static, multi-regional model which tracks
the production and distribution of goods in the global economy.

In GTAP the world is divided into regions (typically representing
individual countries), and each region’s final demand structure is
composed of public and private expenditure across goods.

Ferris (Univ. Wisconsin) OSANDA 2015 Supported by DOE/USDA 21 / 38



The Model

The GTAP model (MOPEC) may be posed as a system of nonsmooth
equations:

F+(w , z ; t) = 0

in which:

wr is a vector of regional welfare levels

z ∈ RN represents a vector of endogenous economic variables, e.g.

prices and quantities, z =

(
P
Q

)
.

t represents matrices of trade tax instruments – import tariffs (tMirs)
and export taxes (tXirs) for each commodity i and region r

Ferris (Univ. Wisconsin) OSANDA 2015 Supported by DOE/USDA 22 / 38



Optimal Sanctions

Coalition member states strategically choose trade taxes which minimize
Russian welfare:

min
tr :r∈C

wrus

s.t.

F+(w , z ; t) = 0

tr = t̄r ∀r /∈ C

tMi ,rus,r ≤ t̄Mi ,r ,rus ∀r ∈ C

tXi ,r ,rus ≤ t̄Xi ,rus,r ∀r ∈ C
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Optimal Retaliation

Russia choose trade taxes which maximize Russian welfare in response to
the coalition actions:

max
trus

wrus

s.t.

F+(w , z ; t) = 0

tr =

{
t̂r r ∈ C
t̄r r /∈ C

where t̂r represents trade taxes for coalition countries (r ∈ C) from the
optimal sanction calculation.
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Coalition Member States for Illustrative Calculation

usa United States

anz Australia and New Zealand

can Canada

fra France

deu Germany

ita Italy

jpn Japan

gbr United Kingdom

reu Rest of the European Union

Ferris (Univ. Wisconsin) OSANDA 2015 Supported by DOE/USDA 25 / 38



Welfare Changes (% Hicksian EV)

sanction retaliation tradewar

rus -4.4 -3.5 -9.8
C average 0.03 0.05 0.03

can 0.021 0.033 0.032
usa 0.007 -0.017 0.032
fra 0.042 0.020 0.032
deu 0.119 -0.047 0.032
ita 0.069 0.050 0.032
gbr 0.045 -0.002 0.032
reu 0.058 0.365 0.032
anz 0.011 0.003 0.032
jpn 0.012 -0.020 0.032

chn 0.115 0.057 0.290
sau 0.240 1.865 -0.892
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Scenarios and Key Insights

sanction If coalition states were to increases tariffs and export taxes
on Russia to the same level which is currently applied by
Russia on bilateral trade flows with the coalition, Russian
welfare could be substantially impacted with no economic
cost for any coalition members.

retaliation Russia could respond to such sanctions by changing it’s
own trade taxes, but optimal “retaliation” largely results in a
reduction rather than an increase in trade taxes on trade
flows to and from coalition states. These tariff changes can
only partially offset the adverse impact of the sanctions.

tradewar If sanctions and retaliation were to result in an unconstrained
trade war, Russia faces a drastic economic cost while the
coalition countries could even be slight better off.
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0i − ui + h1i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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SO equivalent to CE

Consumers k ∈ K solve CP(k): max
dk≥0

Wk (dk)− pTdk

Thermal plants j ∈ T solve TP(j): max
vj≥0

pT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i): max
ui ,xi≥0

pTUi (ui ) + Vi (xi )

s.t. xi = x0i − ui + h1i

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dk ∈ arg max CP(k), k ∈ K,
vj ∈ arg max TP(j), j ∈ T ,

ui , xi ∈ arg max HP(i), i ∈ H,

0 ≤ p ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .
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Agents have stochastic recourse?

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

ρ is a risk measure (e.g. expectation, CVaR)

SP: max cT x1 + ρ[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models
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Risk Measures

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, mean deviations from quantiles, VaR, CVaR

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Two stage stochastic MOPEC

CP(k): max
d1
k

,d2
k (ω)

≥0
Wk

(
d1
k

)
− p1d1

k

+ ρ[Wk

(
d2
k (ω)

)
− p2(ω)d2

k (ω)]

TP(j): max
v1
j

,v2
j (ω)

≥0
p1v1j − Cj(v

1
j )

+ ρ[p2(ω)v2j (ω)− Cj

(
v2j (ω)

)
]

HP(i): max
u1i ,x

1
i ≥0

u2i (ω),x
2
i (ω)≥0

p1Ui (u
1
i )

+ ρ[p2(ω)Ui (u
2
i (ω)) + Vi (x

2
i (ω))]

s.t. x1i = x0i − u1i + h1i ,

x2i (ω) = x1i − u2i (ω) + h2i (ω)

0 ≤ p1 ⊥
∑
i∈H

Ui

(
u1i
)

+
∑
j∈T

v1j ≥
∑
k∈K

d1
k

0 ≤ p2(ω) ⊥
∑
i∈H

Ui

(
u2i (ω)

)
+
∑
j∈T

v2j (ω) ≥
∑
k∈K

d2
k (ω),∀ω
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Equilibrium or optimization?

Each agent has its own risk measure

Is there a system risk measure?

Is there a system optimization problem?

min
∑
i

C (x1i ) + ρi
(
C (x2i (ω))

)
????

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Can we solve efficiently / distributively?
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Example as MOPEC: agents solve a Stochastic Program

Buy yi contracts in period 1, to deliver D(ω)yi in period 2, scenario ω
Each agent i :

min C (x1i ) + ρi
(
C (x2i (ω))

)
s.t. p1x1i + vyi ≤ p1e1i (budget time 1)

p2(ω)x2i (ω) ≤ p2(ω)(D(ω)yi + e2i (ω)) (budget time 2)

0 ≤ v ⊥ −
∑
i

yi ≥ 0 (contract)

0 ≤ p1 ⊥
∑
i

(
e1i − x1i

)
≥ 0 (walras 1)

0 ≤ p2(ω) ⊥
∑
i

(
D(ω)yi + e2i (ω)− x2i (ω)

)
≥ 0 (walras 2)
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Theory and Observations

agent problems are multistage stochastic optimization models

perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

situation complicated when agents are risk averse
I utilize stochastic process over scenario tree
I under mild conditions a social optimum corresponds to a competitive

market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

Otherwise, must solve the stochastic equilibrium problem

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Conclusions

MOPEC problems capture complex interactions between optimizing
agents

Policy implications addressable using MOPEC

MOPEC available to use within the GAMS modeling system

Stochastic MOPEC enables modeling dynamic decision processes
under uncertainty

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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