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The setup: a=(solar, wind, diesel, consumer)
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Dynamics and uncertainties

Scenario tree is data

T stages (use 6 here)

Nodes n ∈ N , n+ successors

Stagewise probabilities µ(m) to move
to next stage m ∈ n+

Uncertainties (wind flow, cloud cover,
rainfall, demand) ωa(n)

Actions ua for each agent (dispatch,
curtail, generate, shed), with costs Ca

State and shared variables (storage,
prices)

Recursive (nested) definition of
expected cost-to-go: θ(n) =∑
m∈n+

µ(m)
(∑

a∈A Ca(ua(m)) + θ(m)
)

t ∈ 0, 1, 2, 3, 4, 5, 6
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Model

SO: min
(θ,u,x)∈F

∑
a∈A

Ca(ua(0)) + θ(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θ(n) ≥
∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
∑
a∈A

ga(ua(n)) ≥ 0

Actions ua (dispatch, curtail, generate, shed), with costs Ca

ga converts actions into energy.

Storage allows energy to be moved across stages (batteries, pump,
compressed air, etc)

Optimization forces an equality to recover definition of θ(n)
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Decomposition (of agents) by prices π
Split up θ into agent contributions θa and add weighted constraints into
objective:

min
(θ,u,x)∈F

∑
a∈A

Ca(ua(0)) + θa(0)− πT (ga(ua(n)))

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

µ(m) (Ca(ua(m)) + θa(m))

Problem then decouples into multiple optimizations (over tree)

AO(a, π): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

µ(m)(Za(m) + θa(m))

Za(n) = Ca(ua(n))− π(n)ga(ua(n))
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SO equivalent to MOPEC (price takers)

Perfectly competitive (Walrasian) equilibrium is a MOPEC

{(ua(n), θa(n)), n ∈ N} ∈ arg min AO(a, π)

and
0 ≤

∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0

One optimization per agent, coupled together with solution of
complementarity (equilibrium) constraint

Overall, a (Generalized) Nash Equilibrium problem (or a MOPEC),
solvable as a large scale complementarity problem (replacing the
optimizations by their KKT conditions) using the PATH solver

MOPEC(µ) equilibrium = SO(µ) optimum

But in practice there is a gap between SO and MOPEC. Why?
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One explanation: risk

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 
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n
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y
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VaR

CVaR

Probability

Maximum
loss

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
µ∈D

Eµ[Z ] = sup
µ∈D

µTZ

If D = {p} then ρ(Z ) = E[Z ]
If Dα,p = {λ : 0 ≤ λi ≤ pi/(1− α),

∑
i λi = 1}, then

ρ(Z ) = CVaRα(Z )
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Dynamic risk averse equilibrium
Replace each agents problem AO by RA:

RA(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n))

pka (m) are extreme points of the agents risk set at m

RE(DA) ≡ RA(a, π,Da) for all a ∈ A and market clearing

RE(DA) equilibrium 6= SO(Ds) risk-averse optimum

Must solve using equilibrium solver

Attempt to construct agreement on what would be the worst-case
outcome by trading risk
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Risk trading can recover system optimum

Contracts for trading risk enable agents to enjoy pooled risk

Perfectly competitive markets can be inefficient if such contracts are
missing

Example: Meridian-Genesis swaption contract enables more efficient
operation of thermal and hydro plant by decreasing risk for both
parties

Theorem (PFW, 2016; FP, 2018): If markets for risk (using dynamic
coherent risk measures) are complete then a perfectly competitive
(risk-averse) equilibrium corresponds to a risk-averse social optimum
using a social risk measure

RET(DA) equilibrium with contracts = SO(Ds) risk-averse optimum

Ds =
⋂
a∈A
Da

In battery problem can recover by trading the system optimal solution
(and its properties) since the retailer/generator agent is risk neutral
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Cascading hydro-thermal system: XMGD

Two hydros on same river: ’1’ is above
’2’: spill or release with generation

Thermal generator ’T’ and consumer
(risk neutral)

D1

D2

D3

T

1

2

Competing firms
(collections of
consumers, or generators
in energy market)

Each firm minimizes
objective independently

Look at joint ownership
issues (firms represented
colors: X, M, G)

Label consumer as ’D’
(but can be partitioned
into ’D1’,’D2’,’D3’)
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Equilibria with cascades: water prices
Tab encodes the water network, water prices are multipliers on:

xa(n−) +
∑
b

Tabub(n) + ωa(n) ≥ xa(n)

Allows interaction with other water uses (irrigation, tourism, conservation)

AO(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

where Za(n) is updated to incorporate prices of interactions

Za(n; u, x) = Ca(ua(n))− π(n)ga(ua(n))+

αa(n) (xa(n)− xa(n−)− ωa(n))−
∑
b∈A

αb(n)Tbaua(n),
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Average inflow 0.6

XMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

MMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

Ownership of both hydros is not beneficial with competitive pricing of
water
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Low inflow 0.1

XMGD
TotRA = 62382
SysRA = 65269
SysRN = 65375

D1

D2

D3

T

1

2

MMGD
TotRA = 62552
SysRA = 65371
SysRN = 65375

D1

D2

D3

T

1

2

Not true: risk averse and low inflows shows advantage to
co-ownership of hydros
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Vertical integration/asset swaps

SysRN and TotRN in risk neutral case,
followed by SysRA and TotRA for three
cases depicted on left

Vertical integration and risk matters!

Base: XMGDEF

D1

D2

D3

T

1

2

Vertical integration: MMGDMG

D1

D2

D3

T

1

2

VI & Asset Swap: GMGDMG

D1

D2

D3

T

1

2
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XMGDEF/MMGDMG/GMGDMG (water price differences)
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Other specializations and extensions (see Kim [Fri, # 101])

min
xi
θi (xi , x−i , z(xi , x−i ), π) s.t. gi (xi , x−i , z , π) ≤ 0, ∀i , f (x , z , π) = 0

π solves VI(h(x , ·),C )

NE: Nash equilibrium (no VI coupling constraints, gi (xi ) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(xi , x−i ) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment
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Conclusions

Showed equilibrium problems built from interacting optimization
problems

Equilibrium problems can be formulated naturally and modeler can
specify who controls what (MOPEC facilitates easy “behavior”
description at model level)

It’s available (in GAMS)

Enables modelers to convey simple structures to algorithms and
allows algorithms to exploit this

Stochastic equilibria - clearing the market in each scenario (risk
measures specified via OVF)

Ability to trade risk using contracts
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