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@ Happy Birthday Jim

@ Mentor, colleague and
friend

@ Now dominoized via
NEOS!

@ Even though not a
convex composite
optimization or exact
penalization, this really
does use constrained
optimization, and a fairly
recent image!
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Hydro-Thermal System (Philpott/F./Wets)

HYDRO THERMAL

e Competing agents (consumers, or generators in energy market)
@ Each agent minimizes objective independently (cost)

@ Market prices are function of all agents activities
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Simple electricity “system optimization” problem

SO: max Z Wi (dk) — Z G(vj) + Z Vi(xi)

de,u;,vj,x; >0

kek JET i€H
s.t. Z Ui (up) + Z v > Z dx,
i€H JET ke

xi=x2—ui+ht, i€H

u; water release of hydro reservoir i € H

v; thermal generation of plant j € T

x; water level in reservoir i € H

prod fn U; (strictly concave) converts water release to energy

Cj(v;) denote the cost of generation by thermal plant

Vi(x;) future value of terminating with storage x (assumed separable)

Wi (dy) utility of consumption dy
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SO equivalent to CE (price takers)

Consumers k € K solve CP(k): max W (di) — p" di

di>0

Thermal plants j € T solve TP(j): max pTvi — G(v)
=

Hydro plants i € #H solve HP(i): max_ p’ U; (u;) + Vi(x))

UjyXj 2>

st. x;=x0 — uj + ht

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dy € argmax CP(k), k ek,
v; € arg max TP(j), JeT,
ui, x; € arg max HP(7), i €H,
0<pLY Ui(u)+d v > de.
i€H JET kel
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MOPEC

o (Generalized) Nash
@ Reformulate
optimization problem as

p solves VI(h(x,-), C) first order conditions
(complementarity)

min 0i(xi,x i, p) s-t. gi(xi,x i,p) <0,Vi

@ Use nonsmooth Newton

equilibrium
min theta(1l) x(1) g(1) methods to solve
... @ Solve overall problem
min theta(m) x(m) g(m) using “individual
vi h p cons optimizations”?
= ]
= + .- “
. .
= B
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Stochastic: Agents have recourse?

@ Agents face uncertainties in reservoir inflows

e Two stage stochastic programming, x' is here-and-now decision,
recourse decisions x? depend on realization of a random variable

@ pis a risk measure (e.g. expectation, CVaR)

SP: min  c(x') + plg” x?]

st. Axt=b, x'>0,

T(w)x! + W(w)x*(w) = d(w),

x*(w) > 0,VYw € Q. ’
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Risk Measures

@ Modern approach to T
modeling risk
aversion uses concept

>
of risk measures 2 T
(]
(] CVaRa mean Of :‘; | VR Maximum
. s a; loss
upper tail beyond w Probability

a-quantile (e.g. T “‘ mm t
CVa
a=09) | il

Loss

@ mean-risk, mean deviations from quantiles, VaR, CVaR
@ Much more in mathematical economics and finance literature

@ Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Dual Representation of Risk Measures

@ Dual representation (of coherent r.m.) in terms of risk sets

p(Z) = sggEu[Zl

If D= {p} then p(Z) = E[Z]
If Dap={A:0< X <pi/(1—a),> ; Ai =1}, then

p(Z) = CVaR4(Z)

Special case of a Quadratic Support Function

1
p(y) = sup <U, By+ b> - é <U, MU>
uel
@ EMP allows any Quadratic Support Function to be defined and
facilitates a model transformation to a tractable form for solution
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Addition: compose equilibria with QS functions

@ Add soft penalties to objectives @ Can solve using MCP or primal
and/or within constraints: reformulations
) @ More general conjugate
min 0(x) + po(F(x)) functions also possible:

s.t. pc(g(x)) <0

barrier penalty: z — In(z) — 1

QS g rhoC udef B M

QSF cvarup F rho0O theta p

SUD ay+1+In(l—y)

R.

@ $batinclude QSprimal modname
using emp min obj 2

@ Allow modeler to compose QS R T S
functions automatically
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The link to MOPEC

min 0(x) + p(F(x))

o) = sup (u. ) — 2 {u, Mo)
uclU

0 € 90(x) + VF(x)"dp(F(x)) + Nx(x)

0 € 90(x) + VF(x)"u+ Nx(x)
0€e—u+0p(F(x)) < 0¢€ —F(x)+ Mu+ Ny(u)

This is a MOPEC, and we have multiple copies of this for each agent
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CP: min  p'd' — W(d")
>0

dl
TP: mi C(v') - ptv?
vlmmzo (vi)—pv
HP: min  —p'U(v})
ul x1>0

st xP=x0—ut+ Al

0<pt LU+ vt >dt
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Two stage stochastic MOPEC (1,1,1)

CP: min  p'd" — W(d") + pc [p2d5 — W(d?)]

d,d2>0
: : 1y _ 11 P22
TP min - C(v)—p'vi+pr [C(v2) = P2vi(w)]
HP:  min — prU(u) + pu [P (W) U(2) — V(53)]
ul x1>0
u? ,x2>0
st xP=x0—ut+ Al

xf):xl—uf,—i—hi

0<pt LU+ vt >dt
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Two stage stochastic MOPEC (1,1,1)

CP: i gt — w(d* 2d? — W(d?
Jmin P (d") + pc [pod; — W(d7)]

TP: min  C(v') —p'v! +p7 [C(V2) — p2vP(w)]

vi,v2>0

HP:  min — prU(u) + pu [P (W) U(2) — V(53)]
ul x1>0
u? ,x2>0

st xP=x0—ut+ Al

xf)le—uf,—i—hi

0<pt LU+ vt >dt
0<pl L U(u3)+ve>d,Vw
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@ Single hydro, thermal and
representative consumer

@ Initial storage 10, inflow of 4 to 0,
equal prob random inflows of i to
node i

@ Risk neutral: SO equivalent to CE
(key point is that each risk set is a
singleton, and that is the same as
the system risk set)

FEEOE@EE®OHE)
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@ Single hydro, thermal and
representative consumer

@ Initial storage 10, inflow of 4 to 0,
equal prob random inflows of i to
node |

@ Risk neutral: SO equivalent to CE
(key point is that each risk set is a
singleton, and that is the same as
the system risk set)

Each agent has its own risk
measure, e.g. 0.8EV + 0.2CVaR

@ Is there a system risk measure?

@ Is there a system optimization
problem?

min Z CO3) + pi (C(E (w))) 27727

FEEOE@EE®OHE)
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Equilibrium or optimization?
Theorem

If (d, v, u, x) solves (risk averse) SO, then there exists a probability

distribution oy and prices p so that (d, v, u, x, p) solves (risk neutral)
CE(o)

(Observe that each agent must maximize their own expected profit using
probabilities oy that are derived from identifying the worst outcomes as
measured by SO. These will correspond to the worst outcomes for each
agent only under very special circumstances)

@ High initial storage level (15 units)

» Worst case scenario is 1: lowest system cost, smallest profit for hydro
» SO equivalent to CE

e Low initial storage level (10 units)
» Different worst case scenarios
» SO different to CE (for large range of demand elasticities)
@ Attempt to construct agreement on what would be the worst-case
outcome by trading risk
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Contracts in MOPEC (Philpott/F./Wets)

e Can we modify (complete) system to have a social optimum by
trading risk?

@ How do we design these instruments? How many are needed? What
is cost of deficiency?

o Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

@ Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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CP:  mi Lat — w(d* [ 242 — W(d? }
dl,c%]lzno P ( )+pC Py, ( w)

TP: min ()= v +p7 [CO2) - p2VP(w) |
vivs>0

HP:  min — prtU(uY) + py [—pz(w)U(ui) — V(x?) ]

ut x1>0
u? x2>0
st xP=x0—ut+ Al

xf,:xl—uf,—i—hi

0<pt LUW)+vt>d?
0<pf L U(u3)+ve > d,Vw
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Trading risk: pay o, now, deliver 1 later in w

CP: min
dl,d2>0,t¢
TP: min
vi,v2>0,tT
HP: min
ut x1>0
u2 X2 >0,tH

s.t.

ot€ + pld' — W(d") + pc [p2d2 — W(d2) - ]
otT + C(v1) = pv' 4+ pr [C(2) = pRv3(w) — 1] ]
ot — pLU(u) + pu [-pR(@) U(2) = V(2) — ]

xt=x0—ut + nt,

xf,le—uf,—i—hi

0<pt LUW)+vt>d?
0<pf L U(u3)+ve > d,Vw
0<o, LtE+tl +tH>0vw
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Main Result

Theorem

Agents a have polyhedral node-dependent risk sets D,(n), n € N'\ L with
nonempty intersection. Now let {u(n) : n€ N,a € A} be a solution to
SO with risk sets Ds(n) = NacaDa(n). Suppose this gives rise to p (hence
o) and prices {p(n) : n € N'} where p(n)o(n) are Lagrange multipliers.
These prices and quantities form a multistage risk-trading equilibrium in
which agent a solves OPT(a) with a policy defined by u,(-) together with a
policy of trading Arrow-Debreu securities defined by {t,(n),n € N\ {0}}. )

@ Low storage setting

o If thermal is risk neutral (even with trading) SO equivalent to CE

o If thermal is identically risk averse, there is a CE, but different to
original SO

@ Trade risk to give optimal solutions for the sum of their positions

@ Under a complete market for risk assumption, we may construct a
competitive equilibrium with risk trading from a social planning
solution
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Theory and Observations

agent problems are multistage stochastic optimization models

@ perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

@ situation complicated when agents are risk averse

> utilize stochastic process over scenario tree

» under mild conditions a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

@ Otherwise, must solve the stochastic equilibrium problem

@ Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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Optimal Sanctions (Boehringer/F./Rutherford)

@ Sanctions can be modeled using similar formulations used for tariff
calculations

@ Model as a Nash equilibrium with players being countries (or a
coalition of countries)

@ Demonstrate the actual effects of different policy changes and the
power of different economic instruments

e GTAP global production/trade database: 113 countries, 57 goods, 5
factors
@ Coalition members strategically choose trade taxes to

@ optimize their welfare (trade war) or
@ minimize Russian welfare

@ Russia chooses trade taxes to maximize Russian welfare in response

@ Impose (QS) constraints that limit the number of instruments used
for each country
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Optimal Sanctions: Results

@ Resulting Nash

equilibrium with ,

trade war, maximize .

damage, side L

payments - all have -

big impact on Russia | -
@ Restricting

instruments can 1

change effects (these
are the different
colored bars)

s [ eeu [ ou | wo [on [ o usa | 2ar | s ecu [oeu] ma | neu ena [ wo [ ao s sau conmeu [oeu [eeu | ma [ena

@ Collective (coalition) e o
action significantly
better Same model can used to determine effects of

Russian trade sanctions on Turkey
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

dualvar (use multipliers from one agent as variables for another)

QS functions (both in objectives and constraints)

Currently available within GAMS

Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

QS extensions to Moreau-Yoshida regularization, compositions,
composite optimization
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