MOPEC: Multiple Optimization Problems with Equilibrium Constraints

Michael C. Ferris

Joint work with Roger Wets

University of Wisconsin

Scientific and Statistical Computing Colloquium, University of Chicago: Tuesday March 26, 2013

Ferris (Wisconsin) MOPEC SSC 1 / 24

The PIES Model (Hogan)

$$\min_{x} c^{T}x$$
 cost
s.t. $Ax = d(p)$ balance
 $Bx = b$ technical constr
 $x > 0$

- Issue is that p is the multiplier on the "balance" constraint of LP
- Extended Mathematical Programming (EMP) facilitates annotations of models to describe additional structure
- Can solve the problem by writing down the KKT conditions of this LP, forming an LCP and exposing p to the model
- EMP does this automatically from the annotations

Ferris (Wisconsin) MOPEC SSC 2 / 24

Reformulation details

$$0 = Ax - d(p) \qquad \qquad \bot \quad \mu$$

$$0 = Bx - b \qquad \qquad \bot \quad \lambda$$

$$0 \le -A^T \mu - B^T \lambda + c \quad \bot \quad x \ge 0$$

- empinfo: dualvar p balance
- replaces $\mu \equiv p$
- LCP/MCP is then solvable using PATH

$$z = \begin{bmatrix} p \\ \lambda \\ x \end{bmatrix}, \quad F(z) = \begin{bmatrix} & & A \\ -A^T & -B^T \end{bmatrix} \begin{bmatrix} p \\ \lambda \\ x \end{bmatrix} + \begin{bmatrix} -d(p) \\ -b \\ c \end{bmatrix}$$

Ferris (Wisconsin) MOPEC SSC 3 / 24

Transmission Line Expansion Model (F./Tang)

- Nonlinear system to describe power flows over (large) network
- Multiple time scales
- Dynamics (bidding, failures, ramping, etc)
- Uncertainty (demand, weather, expansion, etc)
- $p_i^{\omega}(x)$: Price (LMP) at i in scenario ω as a function of x
- Use other models to construct approximation of p_i^ω(x)

Solution approach

- Use derivative free method for the upper level problem (1)
- Requires $p_i^{\omega}(x)$
- Construct these as multipliers on demand equation (per scenario) in an Economic Dispatch (market clearing) model
- But transmission line capacity expansion typically leads to generator expansion, which interacts directly with market clearing
- Interface blue and black models using Nash Equilibria (as EMP):

```
empinfo: equilibrium forall f: min expcost(f) y(f) budget(f) forall \omega: min scencost(\omega) q(\omega) . . .
```

Generator Expansion (2): $\forall f \in F$:

$$\min_{y_f} \sum_{\omega} \pi_{\omega} \sum_{j \in G_f} C_j(y_j, q_j^{\omega}) - r(h_f - \sum_{j \in G_f} y_j)$$

$$\mathrm{s.t.} \sum_{j \in G_f} y_j \le h_f, y_f \ge 0$$

 G_f : Generators of firm $f \in F$

 y_j : Investment in generator j q_i^{ω} : Power generated at bus j

in scenario ω

 C_j : Cost function for gener-

ator *j*

r: Interest rate

Market Clearing Model (3): $\forall \omega$:

$$\min_{z,\theta,q^{\omega}} \sum_{f} \sum_{j \in G_f} C_j(y_j, q_j^{\omega})$$
 s.t.

$$q_j^{\omega} - \sum_{i \in I(j)} z_{ij} = d_j^{\omega} \qquad \forall j \in N(\perp p_j^{\omega})$$

$$z_{ij} = \Omega_{ij}(\theta_i - \theta_j)$$
 $\forall (i,j) \in A$
 $-b_{ij}(x) \le z_{ij} \le b_{ij}(x)$ $\forall (i,j) \in A$

$$\underline{u}_j(y_j) \leq q_j^{\omega} \leq \overline{u}_j(y_j)$$

 z_{ij} : Real power flowing along line ij

 q_j^{ω} : Real power generated at bus i in scenario ω

 θ_i : Voltage phase angle at bus i

 Ω_{ij} : Susceptance of line ij $b_{ij}(x)$: Line capacity as a function of x

 $\underline{u}_j(y)$, Generator j limits $\overline{u}_i(y)$: as a function of y

MOPEC

$$\min_{x_i} \theta_i(x_i, x_{-i}, y)$$
 s.t. $g_i(x_i, x_{-i}, y) \leq 0, \forall i$

```
equilibrium
min theta(1) x(1) g(1)
...
min theta(m) x(m) g(m)
```

is solved in a Nash manner

 Allows multipliers from one problem to be used in another problems dualvar p g(1)

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

Ferris (Wisconsin) MOPEC SSC 7 / 24

Feasibility

KKT of
$$\min_{y_f \in Y} \sum_{\omega} \pi_{\omega} \sum_{j \in G_f} C_j(y_j, q_j^{\omega}) - r(h_f - \sum_{j \in G_f} y_j) \quad \forall f \in F \quad (2)$$

KKT of
$$\min_{(z,\theta,q^{\omega})\in Z(\mathbf{x},\mathbf{y})} \sum_{f} \sum_{j\in G_f} C_j(y_j,q_j^{\omega})$$
 $\forall \omega$ (3)

- Models (2) and (3) form a complementarity problem (CP via EMP)
- Solve (3) as NLP using global solver (actual $C_j(y_j, q_j^{\omega})$ are not convex), per scenario (SNLP) this provides starting point for CP
- ullet Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat
- Identifies CP solution whose components solve the scenario NLP's (3) to global optimality

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Ferris (Wisconsin) MOPEC SSC 8 / 24

Scenario	ω_1	ω_2
Probability	0.5	0.5
Demand Multiplier	8	5.5

SNLP (1):

Scenario	q_1	q ₂	q 3	q 6	9 8
ω_1	3.05	4.25	3.93	4.34	3.39
ω_2		4.41	4.07	4.55	

Scenario	ω_1	ω_2
Probability	0.5	0.5
Demand Multiplier	8	5.5

SNLP (1):

Scenario	q_1	q ₂	q 3	q 6	q 8
ω_1	3.05	4.25	3.93	4.34	3.39
ω_2		4.41	4.07	4.55	

EMP (1):

Scenario	q_1	q ₂	q 3	q 6	q 8
ω_1	2.86	4.60	4.00	4.12	3.38
ω_2		4.70	4.09	4.24	

Firm	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>У</i> 6	<i>y</i> ₈
f_1	167.83	565.31			266.86
f_2			292.11	207.89	

Scenario	ω_1	ω_2
Probability	0.5	0.5
Demand Multiplier	8	5.5

SNLP (2):

Scenario	q_1	q 2	q 3	9 6	q 8
ω_1	0.00	5.35	4.66	5.04	3.91
ω_2		4.70	4.09	4.24	

Scenario	ω_1	ω_2
Probability	0.5	0.5
Demand Multiplier	8	5.5

SNLP (2):

Scenario	q_1	q ₂	q 3	q 6	q 8
ω_1	0.00	5.35	4.66	5.04	3.91
ω_2		4.70	4.09	4.24	

EMP (2):

Scenario	q_1	q ₂	q 3	q 6	q 8
ω_1	0.00	5.34	4.62	5.01	3.99
ω_2		4.71	4.07	4.25	

Firm	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₆	<i>y</i> ₈
f_1	0.00	622.02			377.98
f_2			283.22	216.79	

Observations

- But this is simply one function evaluation for the outer "transmission capacity expansion" problem
- Number of critical arcs typically very small
- But in this case, p_j^{ω} are very volatile
- Outer problem is small scale, objectives are open to debate, possibly ill conditioned

- Economic dispatch should use AC power flow model
- Structure of market open to debate
- Types of "generator expansion" also subject to debate
- Suite of tools is very effective in such situations

Ferris (Wisconsin) MOPEC SSC 11 / 24

EMP: variational inequalities

Allows (GAMS) models to be manipulated to form other problems of interest via a simple EMP info file:

• VI(*f*, *C*):

$$0 \in f(x) + N_C(x)$$

vi f x cons

generates a variational inequality where C defined by 'cons'

- Either generates the equivalent complementarity (KKT) problem, or provides problem structure for algorithmic exploitation
- Extension of (square) nonlinear systems and mixed complementarity problems
- QVI can be specified in the same manner

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Ferris (Wisconsin) MOPEC SSC 12 / 24

MOPEC

$$\min_{\mathbf{x}_i} \theta_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{p}) \text{ s.t. } g_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{p}) \leq 0, \forall i$$

and

$$p$$
 solves $VI(h(x, \cdot), C)$

```
equilibrium
min theta(1) x(1) g(1)
...
min theta(m) x(m) g(m)
vi h p cons
```

is solved in a Nash manner

→□▶ →□▶ →□▶ →□▶ □ ♥9

13 / 24

Ferris (Wisconsin) MOPEC SSC

MOPEC

$$\min_{\mathbf{x}_i} \theta_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{p}) \text{ s.t. } g_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{p}) \leq 0, \forall i$$

and

$$h(x, p) = 0$$

```
equilibrium
min theta(1) x(1) g(1)
...
min theta(m) x(m) g(m)
vi h p cons
```

is solved in a Nash manner

- ◀ □ ▶ ◀ 🗇 ▶ ◀ 필 Þ - (필 ·) 역 Q @

13 / 24

Ferris (Wisconsin) MOPEC SSC

Water rights pricing (Britz/F./Kuhn)

Ferris (Wisconsin) MOPEC SSC 14 / 24

The model AO

$$\max_{\substack{q_i, x_i, wo_i \geq 0 \\ \text{s.t.}}} \sum_{i} \left(q_i \cdot p - \sum_{f \in \{int, lab\}} x_{i,f} \cdot w_f \right)$$

$$\text{s.t.} \qquad q_i \leq \prod_{f} \left(x_{i,f} + e_{i,f} \right)^{\epsilon_{i,f}}$$

$$x_{i,land} \leq e_{i,land}$$

$$wo_{i-1} = x_{i,wat} + wo_i$$

$$0 \le \sum_{i} q_{i} - d(p) \perp p \ge 0$$

$$0 \le \sum_{i} e_{i,lab} - \sum_{i} x_{i,lab} \perp w_{lab} \ge 0$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Ferris (Wisconsin) MOPEC SSC 15 / 24

The model IO

$$\max_{\substack{q_i, x_i, wo_i \ge 0}} \begin{pmatrix} q_i \cdot p - \sum_f x_{i,f} \cdot w_f \\ s.t. \end{pmatrix}$$
s.t.
$$q_i \le \prod_f (x_{i,f} + e_{i,f})^{\epsilon_{i,f}}$$

$$x_{i,land} \le e_{i,land}$$

$$wo_{i-1} = x_{i,wat} + wo_i$$

$$\begin{array}{lll} 0 \leq & \sum_{i} q_{i} - d(p) & \bot & p \geq 0 \\ 0 \leq & \sum_{i} e_{i,lab} - \sum_{i} x_{i,lab} & \bot & w_{lab} \geq 0 \end{array}$$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

The model IO

$$\max_{\substack{q_i, x_i, wo_i, wr_i^b, wr_i^s \geq 0}} \left(q_i \cdot p - \sum_f x_{i,f} \cdot w_f - wr_i^b \cdot (w_{wr} + \tau) + wr_i^s \cdot w_{wr}\right)$$
s.t.
$$q_i \leq \prod_f (x_{i,f} + e_{i,f})^{\epsilon_{i,f}}$$

$$x_{i,land} \leq e_{i,land}$$

$$wo_{i-1} = x_{i,wat} + wo_i$$

$$wr_i + wr_i^b \geq x_{i,wat} + wr_i^s$$

$$0 \leq \sum_{i} q_{i} - d(p) \perp p \geq 0$$

$$0 \leq \sum_{i} e_{i,lab} - \sum_{i} x_{i,lab} \perp w_{lab} \geq 0$$

$$0 \leq \sum_{i} wr_{i}^{s} - \sum_{i} wr_{i}^{b} \perp w_{wr} \geq 0$$

Ferris (Wisconsin) MOPEC SSC 15 / 24

Different Management Strategies

Hydro-Thermal System (Philpott/F./Wets)

Ferris (Wisconsin) MOPEC SSC 17 / 24

Simple electricity system optimization problem

SSP: min
$$\sum_{j \in \mathcal{T}} C_j(v(j)) - \sum_{i \in \mathcal{H}} V_i(x(i))$$

s.t.
$$\sum_{i \in \mathcal{H}} U_i(u(i)) + \sum_{j \in \mathcal{T}} v(j) \geq d,$$
$$x(i) = x_0(i) - u(i), \quad i \in \mathcal{H}$$
$$u(i), v(j), x(i) \geq 0.$$

- u(i) water release of hydro reservoir $i \in \mathcal{H}$
- v(j) thermal generation of plant $j \in \mathcal{T}$
- production function U_i (strictly concave) converts water release to energy
- water level reservoir $i \in \mathcal{H}$ is denoted x(i)
- $C_j(v(j))$ denote the cost of generation by thermal plant
- $V_i(x(i))$ to be the future value of terminating the period with storage x (assumed separable)

Ferris (Wisconsin) MOPEC SSC 18 / 24

SSP equivalent to CE

Thermal plants solve

TP(j):
$$\max \pi v(j) - C_j(v(j))$$

s.t. $v_1(j) \ge 0$.

The hydro plants $i \in \mathcal{H}$ solve

HP(i):
$$\max \pi U_i(u(i)) + V_i(x(i))$$

s.t. $x(i) = x_0(i) - u(i)$
 $u(i), x(i) \ge 0$.

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE:
$$u(i), x(i) \in \arg\max \mathsf{HP}(i),$$
 $i \in \mathcal{H},$ $v(j) \in \arg\max \mathsf{TP}(j),$ $j \in \mathcal{T},$ $0 \le (\sum_{i \in \mathcal{H}} U_i(u(i)) + \sum_{j \in \mathcal{T}} v(j)) - d \perp \pi \ge 0,$

GAMS/EMP: Stochastic programming tools

- GAMS has extended mathematical programming tools to build "models of models"
- Given the core model, can annotate parameters as "random variables"
- Automatically solves expected value problem
- Can solve using deterministic equivalent or specialized solvers (including Bender's decomposition, importance sampling (DECIS), etc)
- Also allows for a variety of new constructs (such as risk measures and chance constraints)

$$\mathbb{R}_{\omega}\left[c^0(x)+\sum_{t=0}^T p_{\omega t}(q_{\omega t}^+-q_{\omega t}^-)+c^1(q_{\omega t}^++q_{\omega t}^-)
ight]$$

Two stage problems

$$\begin{aligned} \mathsf{TP}(j) \colon & \max \quad \pi_1 v_1(j) - C_j(v_1(j)) + \\ & \quad R_{\omega}[\pi_2(\omega) v_2(j,\omega) - C_j(v_2(j,\omega))] \end{aligned}$$

s.t.
$$v_1(j) \ge 0, \quad v_2(j,\omega) \ge 0,$$

for all $\omega \in \Omega$.

$$\mathsf{HP}(i): \quad \max \quad \pi_1 U_i(u_1(i)) + \\ R_{\omega}[\pi_2(\omega) U_i(u_2(i,\omega)) + V_i(x_2(i,\omega))]$$

s.t.
$$x_1(i) = x_0(i) - u_1(i) + h_1(i),$$

$$x_2(i,\omega) = x_1(i) - u_2(i,\omega) + h_2(i,\omega),$$

$$u_1(i), x_1(i) \ge 0, \quad u_2(i,\omega), x_2(i,\omega) \ge 0,$$

 $\text{ for all } \omega \in \Omega, \\ \text{ for all } \omega \in \Omega.$

Results

- Suppose every agent is risk neutral and has knowledge of all deterministic data, as well as sharing the same probability distribution for inflows. SP solution is same as CE solution
- Using coherent risk measure (weighted sum of expected value and conditional variance at risk), 10 scenarios for rain
 - High initial storage: risk-averse central plan (RSP) and the risk-averse competitive equilibrium (RCE) have same solution (but different to risk neutral case)
 - 2 Low initial storage: RSP and RCE are very different. Since the hydro generator and the system do not agree on a worst-case outcome, the probability distributions that correspond to an equivalent risk neutral decision will not be common.
 - Sextension: Construct MOPEC models for trading risk

Ferris (Wisconsin) MOPEC SSC 22 / 24

What is EMP?

Annotates existing equations/variables/models for modeler to provide/define additional structure

- equilibrium
- vi (agents can solve min/max/vi)
- bilevel (reformulate as MPEC, or as SOCP)
- disjunction (or other constraint logic primitives)
- randvar
- dualvar (use multipliers from one agent as variables for another)
- extended nonlinear programs (library of plq functions)

Currently available within GAMS

Ferris (Wisconsin) MOPEC SSC 23 / 24

Conclusions

- Optimization helps understand what drives a system
- Collections of models needed for specific decisions
- Modern optimization within applications requires multiple model formats, computational tools and sophisticated solvers
- EMP model type is clear and extensible, additional structure available to solver
- Uncertainty is present everywhere
- We need not only to quantify it, but we need to hedge/control/ameliorate it
- Stochastic MOPEC models capture behavioral effects (as an EMP)
- Policy implications addressable using Stochastic MOPEC
- Extended Mathematical Programming available within the GAMS modeling system

Ferris (Wisconsin) MOPEC SSC 24 / 24