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The PIES Model (Hogan)

minx cT x
cost

s.t. Ax = d(p)
balance

Bx = b
technical constr

x ≥ 0

Issue is that p is the multiplier on the “balance” constraint of LP

Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Reformulation details

0 = Ax − d(p) ⊥ µ
0 = Bx − b ⊥ λ
0 ≤ −ATµ− BTλ+ c ⊥ x ≥ 0

empinfo: dualvar p balance

replaces µ ≡ p

LCP/MCP is then solvable using PATH

z =

pλ
x

 , F (z) =

 A
B

−AT −BT

pλ
x

+

−d(p)
−b
c


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Transmission Line Expansion Model (F./Tang)

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)
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Nonlinear system to
describe power flows
over (large) network

Multiple time scales

Dynamics (bidding,
failures, ramping, etc)

Uncertainty (demand,
weather, expansion, etc)

pωi (x): Price (LMP) at i
in scenario ω as a
function of x

Use other models to
construct approximation
of pωi (x)
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Solution approach

Use derivative free method for the upper level problem (1)

Requires pωi (x)

Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

Interface blue and black models using Nash Equilibria (as EMP):

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall ω: min scencost(ω) q(ω) . . .
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Generator Expansion (2): ∀f ∈ F :

min
yf

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj)

s.t.
∑
j∈Gf

yj ≤ hf , yf ≥ 0

Gf : Generators of firm f ∈ F
yj : Investment in generator j
qωj : Power generated at bus j

in scenario ω
Cj : Cost function for gener-

ator j
r : Interest rate

Market Clearing Model (3): ∀ω :

min
z,θ,qω

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) s.t.

qωj −
∑
i∈I (j)

zij = dωj ∀j ∈ N(⊥ pωj )

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj)

zij : Real power flowing along
line ij

qωj : Real power generated at
bus j in scenario ω

θi : Voltage phase angle at
bus i

Ωij : Susceptance of line ij
bij(x): Line capacity as a func-

tion of x
uj(y), Generator j limits
uj(y): as a function of y
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MOPEC

min
xi
θi (xi , x−i , y) s.t. gi (xi , x−i , y) ≤ 0,∀i

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

is solved in a Nash manner

Allows multipliers from one problem to be used in another problems

dualvar p g(1)
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Feasibility

KKT of min
yf ∈Y

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj) ∀f ∈ F (2)

KKT of min
(z,θ,qω)∈Z(x ,y)

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) ∀ω (3)

Models (2) and (3) form a complementarity problem (CP via EMP)

Solve (3) as NLP using global solver (actual Cj(yj , q
ω
j ) are not

convex), per scenario (SNLP) this provides starting point for CP

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Identifies CP solution whose components solve the scenario NLP’s (3)
to global optimality
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, pωj are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned
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Comparing the different types of objective functions

 

 
LMP
LMP and Generator Cost
LMP with interest rate

Economic dispatch should use AC power flow model

Structure of market open to debate

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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EMP: variational inequalities

Allows (GAMS) models to be manipulated to form other problems of
interest via a simple EMP info file:

VI(f ,C ):
0 ∈ f (x) + NC (x)

vi f x cons

generates a variational inequality where C defined by ’cons’

Either generates the equivalent complementarity (KKT) problem, or
provides problem structure for algorithmic exploitation

Extension of (square) nonlinear systems and mixed complementarity
problems

QVI can be specified in the same manner
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0, ∀i

and
p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

is solved in a Nash manner
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0, ∀i

and
h(x , p) = 0

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

is solved in a Nash manner

Ferris (Wisconsin) MOPEC SSC 13 / 24



Water rights pricing (Britz/F./Kuhn)
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The model AO

max
qi ,xi ,woi≥0

∑
i

qi · p −
∑

f ∈{int,lab}

xi ,f · wf


s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

wri + wrbi ≥ xi ,wat + wr si

0 ≤
∑

i qi − d(p) ⊥ p ≥ 0

0 ≤
∑
i

ei ,lab −
∑
i

xi ,lab ⊥ wlab ≥ 0

0 ≤
∑
i

wr si −
∑
i

wrbi ⊥ wwr ≥ 0
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The model IO

max
qi ,xi ,woi≥0

∑
i

(
qi · p −

∑
f

xi ,f · wf

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

wri + wrbi ≥ xi ,wat + wr si

0 ≤
∑

i qi − d(p) ⊥ p ≥ 0

0 ≤
∑
i

ei ,lab −
∑
i

xi ,lab ⊥ wlab ≥ 0

0 ≤
∑
i

wr si −
∑
i

wrbi ⊥ wwr ≥ 0

Ferris (Wisconsin) MOPEC SSC 15 / 24



The model IO

max
qi ,xi ,woi ,wr

b
i ,wr

s
i ≥0

∑
i

(
qi · p −

∑
f

xi ,f · wf − wrbi · (wwr + τ) + wr si · wwr

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi
wri + wrbi ≥ xi ,wat + wr si

0 ≤
∑

i qi − d(p) ⊥ p ≥ 0

0 ≤
∑
i

ei ,lab −
∑
i

xi ,lab ⊥ wlab ≥ 0

0 ≤
∑
i

wr si −
∑
i

wrbi ⊥ wwr ≥ 0
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Different Management Strategies
Figure 4
Click here to download high resolution image
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity system optimization problem

SSP: min
∑

j∈T Cj(v(j))−
∑

i∈H Vi (x(i))

s.t.
∑

i∈H Ui (u(i)) +
∑

j∈T v(j) ≥ d ,

x(i) = x0(i)− u(i), i ∈ H
u(i), v(j), x(i) ≥ 0.

u(i) water release of hydro reservoir i ∈ H
v(j) thermal generation of plant j ∈ T
production function Ui (strictly concave) converts water release to
energy

water level reservoir i ∈ H is denoted x(i)

Cj(v(j)) denote the cost of generation by thermal plant

Vi (x(i)) to be the future value of terminating the period with storage
x (assumed separable)
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SSP equivalent to CE
Thermal plants solve

TP(j): max πv(j)− Cj(v(j))

s.t. v1(j) ≥ 0.

The hydro plants i ∈ H solve

HP(i): max πUi (u(i)) + Vi (x(i))

s.t. x(i) = x0(i)− u(i)
u(i), x(i) ≥ 0.

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: u(i), x(i) ∈ arg max HP(i), i ∈ H,
v(j) ∈ arg max TP(j), j ∈ T ,
0 ≤ (

∑
i∈H Ui (u(i)) +

∑
j∈T v(j))− d ⊥ π ≥ 0,
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GAMS/EMP: Stochastic programming tools

GAMS has extended mathematical programming tools to build
“models of models”

Given the core model, can annotate parameters as “random variables”

Automatically solves expected value problem

Can solve using deterministic equivalent or specialized solvers
(including Bender’s decomposition, importance sampling (DECIS),
etc)

Also allows for a variety of new constructs (such as risk measures and
chance constraints)

Rω

[
c0(x) +

T∑
t=0

pωt(q
+
ωt − q−ωt) + c1(q+ωt + q−ωt)

]
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Two stage problems

TP(j): max π1v1(j)− Cj(v1(j))+
Rω[π2(ω)v2(j , ω)− Cj (v2(j , ω))]

s.t. v1(j) ≥ 0, v2(j , ω) ≥ 0, for all ω ∈ Ω.

HP(i): max π1Ui (u1(i))+
Rω[π2(ω)Ui (u2(i , ω)) + Vi (x2(i , ω))]

s.t. x1(i) = x0(i)− u1(i) + h1(i),
x2(i , ω) = x1(i)− u2(i , ω) + h2(i , ω), for all ω ∈ Ω,
u1(i), x1(i) ≥ 0, u2(i , ω), x2(i , ω) ≥ 0, for all ω ∈ Ω.
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Results

Suppose every agent is risk neutral and has knowledge of all
deterministic data, as well as sharing the same probability distribution
for inflows. SP solution is same as CE solution

Using coherent risk measure (weighted sum of expected value and
conditional variance at risk), 10 scenarios for rain

1 High initial storage: risk-averse central plan (RSP) and the risk-averse
competitive equilibrium (RCE) have same solution (but different to risk
neutral case)

2 Low initial storage: RSP and RCE are very different. Since the hydro
generator and the system do not agree on a worst-case outcome, the
probability distributions that correspond to an equivalent risk neutral
decision will not be common.

3 Extension: Construct MOPEC models for trading risk
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS

Ferris (Wisconsin) MOPEC SSC 23 / 24



Conclusions

Optimization helps understand what drives a system

Collections of models needed for specific decisions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Uncertainty is present everywhere

We need not only to quantify it, but we need to
hedge/control/ameliorate it

Stochastic MOPEC models capture behavioral effects (as an EMP)

Policy implications addressable using Stochastic MOPEC

Extended Mathematical Programming available within the GAMS
modeling system
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