Coupled Optimization Models for Planning and
Operation of Power Systems on Multiple Scales

Michael C. Ferris

University of Wisconsin, Madison

Computational Needs for the Next Generation Electric Grid,
April 19, 2011

Ferris (Univ. Wisconsin) Coupled Opt Models Cornell, April 2011 1/26



The premise

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierachical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Coupling of smaller models with well defined interfaces allows
validation, understanding, and enhanced solution techniques.
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Representative decision-making timescales in electric power

Closed-loop
Control and glc()):t(regl E:g
Relay Setpoint _— Relay Action
Selection Day ahead
ﬂ Lgng-terén market w/ unit
orwar commitment
» Power Plant . Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin «
Transmission Schedulng o Five

Siting & Construction minute
@ ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds

A monster model is difficult to validate, inflexible, prone to errors.
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Transmission Line Expansion Model (1)

min Zmzdfpf(X)
w ieN
s.t. Ax<b (RTO budget (and other) constraints)
N: The set of all nodes
X: The set of all line expansions being considered
X: Amount of investment in line x € X
w: Demand scenarios
Tt Probability of scenario w occuring
d: Demand of load node i in in scenario w
p¥(x): Price (LMP) at load node i in scenario w as a function of x
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Generator Expansion (2)

Vf e F: n}inZ?TwZCj()/j;Qf)_r(hf_Z)’j)

w JjEGr JEGr
s.t. Z yj < hr (budget cons)
JEGr
yr =0

F:  The set of firms

Gr:  The set of all generators belonging to firm f

w:  Demand scenarios

yj:  Amount of investment in generator j

gj:  Real power generated at bus |

Cj: Cost function of generator j as a function of y; and g;
r: Interest Rate
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Market Clearing Model (3)

Vw : mmZZC yj,qj

7

f JjeGs
s.t. =z vj e N(L py)
i€l(j)
zjj = Q0 — 0;) V(i,j)eA
— bjj(x) < zj < bjj(x) v(i,j)eA

—ui(y;) < g < 5i(y)

zjj: Real power flowing along the i-j arc
qj: Real power generated at bus j

0;: Voltage phase angle at bus i

Qj: Susceptance of line i-j

bij(x): Line capacity as a function of x

uj(x), Gj(x):  Generator j limits as a function of y
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Flow of information

min Transmission line expansion (1) E(f(p“(x)))
s.t. Vf € F Generator expansion (2) = KKT(2)
X, q° =y

Vw Market clearing (3) = KKT(3)

X,y = g%, p(x)

Why isn’t this just a monster model?
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Solution methods

@ Use deriviative free method for the upper level problem (1)

@ Models (2) and (3) form an MCP (via EMP)

@ Solve (3) as NLP using global solver, per scenario (SNLP)
Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Alternative: Can show (due to specific problem structure that there is
a (convex) NLP whose KKT conditions are that MCP

Useful for theoretical analysis

Resulting problem is too large for NLP solvers

Can show that “Gauss-Seidel/Jacobi” method on problems in (2) and
(3) converges in this case - decoupling makes problem tractable for
large scale instances
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | q1 | G | G3 | G | Gs

w1 3.05| 425|393 | 434 3.39

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | q1 | G | G3 | G | Gs

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm |y y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
H 292.11 | 207.89
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Scenario

w1 | w2
Probability 05105
Demand Multiplier | 8 | 5.5
SNLP (2):
Scenario | g1 | 92 | 93 | G | s
w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
w2 470 | 4.09 | 4.24
EMP (2):
Scenario | g1 | 92 | 93 | G | s
w1 0.00 | 5.34 | 462 | 5.01 | 3.99
w2 471 | 4.07 | 4.25
Firm | » y2 ¥3 Y6 8
fi 0.00 | 622.02 377.98
f> 283.22 | 216.79
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Scenario

w1 w2 w3 W4 Ws

Probability 02]02]025|0.1]0.25
Demand Multiplier | 4 | 6.5 | 9.5 8 | 8.9
EMP (1):

Scenario | g1 | ¢ | g3 | G5 | Gs

w1 340|331 | 277

w) 435 | 3.83|3.88|3.35

w3 3.53 1530 |4.66 | 5.04 | 3.99

w4 2.80 | 455 | 400 | 4.12 | 3.41

ws 3.27 | 5.00 | 441 | 4.68 | 3.73

Firm | » y2 Y3 Y6 Y8
fi 194.39 | 469.99 335.61
> 292.89 | 207.11
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Scenario w1 | wa | w3 | ws | ws
Probability 02]102]025]|0.1]0.25
Demand Multiplier | 4 | 6.5 | 9.5 8 | 8.9
EMP (2):

Scenario | g1 | 92 | g3 | 96 | Gs

w1 5.04 | 4.45 | 0.00

Wy 437|386 | 3.83|3.35

w3 3.46 | 5.33 | 4.71 | 5.00 | 4.01

W4 0.00 | 5.31 | 4.67 | 497 | 3.99

Wy 3.22 | 5.04 | 445 | 464 | 3.75
Firm | » y2 Y3 Y6 Y8
fi 145.45 | 507.45 347.05
> 320.54 | 179.46
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e Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

» appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

» ability for individual subproblem solution verification and engagement
of decision makers

> ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

» ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution

quality)
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Extended Mathematical Programs

@ Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

@ Problem format is old/traditional

mXin f(x)s.t. g(x) <0,h(x)=0

o Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Nash Equilibria

@ Nash Games: x* is a Nash Equilibrium if

x; € arg min {i(xi,x*;,q),Vi € T
xX;EX;

x_; are the decisions of other players.

@ Quantities g given exogenously, or via complementarity:

0<H(x,q) L g>0

@ empinfo: equilibrium
min loss(i) x(i) cons(i)
vifunc H q
o Key difference: optimization assumes you control the complete system

@ Equilibrium determines what activities run, and who produces what

Ferris (Univ. Wisconsin) Coupled Opt Models Cornell, April 2011 16 / 26



Supply function equilibria

OPF(c): min, energy dispatch cost (y, a)
s.t. conservation of power flow at nodes

Kirchoff's voltage law, and simple bound constraints
« are (given) price bids, parametric optimization
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Supply function equilibria

OPF(c): min, energy dispatch cost (y, a)
s.t. conservation of power flow at nodes
Kirchoff's voltage law, and simple bound constraints

« are (given) price bids, parametric optimization

Leader(@—;): maxq,;yx firm i's profit (aj,y, \)
s.t. 0<a; <&
y solves OPF(«;, a_;)

Note that objective involves multiplier from OPF problem
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Supply function equilibria

OPF(c): min, energy dispatch cost (y, a)
s.t. conservation of power flow at nodes
Kirchoff's voltage law, and simple bound constraints

« are (given) price bids, parametric optimization

Leader(@—;): maxq,;yx firm i's profit (aj,y, \)
s.t. 0<a; <&
y solves OPF(«;, a_;)

Note that objective involves multiplier from OPF problem

Leader(a—;): maxq,,,n firm i's profit (y, A, a)
s.t. 0<a;<éq;
y, A solves KKT(OPF(aj, a—j))
This is an example of an MPCC since KKT form complementarity
constraints
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Multi-player EPEC and security constraints

o (a1,0,...,0m) is an equilibrium if

@; solves Leader(a_;), Vi

@ (Nonlinear) Nash Equilibrium where each player solves an MPCC
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Multi-player EPEC and security constraints

o (a1,0,...,0m) is an equilibrium if

&; solves Leader(a_;), Vi

(Nonlinear) Nash Equilibrium where each player solves an MPCC
MPCC is hard (lacks a constraint qualification)
Nash Equilibrium is PPAD-complete (Chen et al, Papadimitriou et al)

In practice, also require contingency (scenario) constraints imposed in
the OPF problem

Leader/follower game: Stackleberg

Supply chains with “market leader”
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Transmission switching

Opening lines in a transmission network can reduce cost

Total Cost: $20/MWh x 100 MWh
e 200 MW ted -
° BENCITIEd - apacity limit: 100 MW 100 MW +$40/MWh x 100 = $6,000/h
$20/MWh generated
— ®

67 MW

°

@
$20/MWh q

e
200 MW load @ 100 MW

generated
AN J

Capacity limit: 100 MW

/ 67 MW
33MW
33MW

200 MW load

$40/MWh A PN
$40/MWh 67 MW 1
(a) Infeasible due to line capacity (b) Feasible dispatch

Need to use expensive generator due to power flow characteristics and
capacity limit on transmission line
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The basic model

ming .9 ch

s.t. g—d:Af,f:BAT9
OL<0<0y
BL=8=8u
fL<f<fy

generation cost

A is node-arc incidence
bus angle constraints
generator capacities
transmission capacities

with transmission switching (within a smart grid technology) we modify as:

ming £ ¢ ch
s.t. g —d=Af
0L <0<y
BL=g=<8u
either ;= (BATO);,f; < f < fy,; ificlosed
or fi=0 if i open

Use EMP to facilitate the disjunctive constraints (several equivalent

formulations, including LPEC)

Ferris (Univ. Wisconsin)
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But who cares?

@ Why aren't you using my ¥¥¥¥¥**x¥%% 3lo0rithm?
(Michael Ferris, Boulder, CO, 1994)
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But who cares?

Why aren’t you using my ¥¥¥¥*x¥*x%% 5|oorithm?
(Michael Ferris, Boulder, CO, 1994)

Show me on a problem like mine

Must run on defaults

Must deal graciously with poorly specified cases

Must be usable from my environment (Matlab, R, GAMS, ...)

Must be able to model my problem easily

EMP provides annotations to an existing optimization model that convey
new model structures to a solver

NEQS is soliciting case studies that show how to do the above, and will
provide some tools to help
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)
Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions

Ferris (Univ. Wisconsin) Coupled Opt Models Cornell, April 2011 22 /26



The model details: c.f. Brown, Demarzo, Eaves
Each agent maximizes:

Qp |
Up = — Z Ts <“ - H Ch,s,/>
s /
Z Po,iCh,0,1 + Z qrZpk < Z Po,1€h,0,1
/ K /

Time O:

Time 1:

§ Ps,iChys,| < E Ps,i E Ds 1k * znk + § Ps,i€h,s,I
/ / K /

Additional constraints (complementarity) outside of control of agents:

0< =) zpuLag>0
h

0< — E dhst L psy >0
h
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Stochastic programming and risk measures

SP: min c¢'x+R[d"y]
st. Ax=0b
T(w)x + W(w)y(w) > h(w), for all w € Q,

x>0, y(w)>0, for all w € Q.

Annotations are slightly more involved but straightforward:
@ Need to describe probability distribution

o Define (multi-stage) structure (what variables and constraints belong
to each stage)

@ Define random parameters and process to generate scenarios
@ Can also define risk measures on variables

Automatic reformulation (deterministic equivalent), solvers such as
DECIS, etc.
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Additional techniques requiring extensive computation

e Chance constraints: Prob(T;x + Wiy; > hj) > 1 — « - can
reformulate as MIP and adapt cuts

@ Use of discrete variables (in submodels) to capture logical or discrete
choices

@ Optimization of simulation or noisy functions
@ Robust or stochastic programming

@ Decomposition approaches to exploit underlying structure identified
by EMP

@ Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

o EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further
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