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The premise

The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

Decision processes (in this environment) are predominantly
hierarchical.

Models to support such decision processes must also be layered or
hierachical.

Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

Coupling of smaller models with well defined interfaces allows
validation, understanding, and enhanced solution techniques.
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Representative decision-making timescales in electric power
systems
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Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

A monster model is difficult to validate, inflexible, prone to errors.
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Transmission Line Expansion Model (1)

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

s.t. Ax ≤ b (RTO budget (and other) constraints)

N: The set of all nodes
X : The set of all line expansions being considered
x : Amount of investment in line x ∈ X
ω: Demand scenarios
πω: Probability of scenario ω occuring
dωi : Demand of load node i in in scenario ω
pωi (x): Price (LMP) at load node i in scenario ω as a function of x
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Generator Expansion (2)

∀f ∈ F : min
yf

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj)

s.t.
∑
j∈Gf

yj ≤ hf (budget cons)

yf ≥ 0

F : The set of firms
Gf : The set of all generators belonging to firm f
ω: Demand scenarios
yj : Amount of investment in generator j
qj : Real power generated at bus j
Cj : Cost function of generator j as a function of yj and qj
r : Interest Rate
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Market Clearing Model (3)

∀ω : min
z,θ,q

∑
f

∑
j∈Gf

Cj(yj , q
ω
j )

s.t. qωj − dωj =
∑
i∈I (j)

zij ∀j ∈ N(⊥ pωj ) (flow balance)

zij = Ωij(θi − θj) ∀(i , j) ∈ A (line data)

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A (line capacity)

− uj(yj) ≤ qj ≤ ūj(yj) (gen capacity)

zij : Real power flowing along the i-j arc
qj : Real power generated at bus j
θi : Voltage phase angle at bus i
Ωij : Susceptance of line i-j
bij(x): Line capacity as a function of x
uj(x), ūj(x): Generator j limits as a function of y
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Flow of information

min
x

Transmission line expansion (1) E(f (pω(x)))

s.t. ∀f ∈ F Generator expansion (2) =⇒ KKT (2)

x , qω 7→ y

∀ω Market clearing (3) =⇒ KKT (3)

x , y 7→ qω, pω(x)

Why isn’t this just a monster model?
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Solution methods

Use deriviative free method for the upper level problem (1)

Models (2) and (3) form an MCP (via EMP)

Solve (3) as NLP using global solver, per scenario (SNLP)

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Alternative: Can show (due to specific problem structure that there is
a (convex) NLP whose KKT conditions are that MCP

Useful for theoretical analysis

Resulting problem is too large for NLP solvers

Can show that “Gauss-Seidel/Jacobi” method on problems in (2) and
(3) converges in this case - decoupling makes problem tractable for
large scale instances
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79
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Scenario ω1 ω2 ω3 ω4 ω5

Probability 0.2 0.2 0.25 0.1 0.25
Demand Multiplier 4 6.5 9.5 8 8.9

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.40 3.31 2.77
ω2 4.35 3.83 3.88 3.35
ω3 3.53 5.30 4.66 5.04 3.99
ω4 2.89 4.55 4.00 4.12 3.41
ω5 3.27 5.00 4.41 4.68 3.73

Firm y1 y2 y3 y6 y8
f1 194.39 469.99 335.61
f2 292.89 207.11
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Scenario ω1 ω2 ω3 ω4 ω5

Probability 0.2 0.2 0.25 0.1 0.25
Demand Multiplier 4 6.5 9.5 8 8.9

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 5.04 4.45 0.00
ω2 4.37 3.86 3.83 3.35
ω3 3.46 5.33 4.71 5.00 4.01
ω4 0.00 5.31 4.67 4.97 3.99
ω5 3.22 5.04 4.45 4.64 3.75

Firm y1 y2 y3 y6 y8
f1 145.45 507.45 347.05
f2 320.54 179.46
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Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

I appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

I ability for individual subproblem solution verification and engagement
of decision makers

I ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

I ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution
quality)
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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vifunc H q

Key difference: optimization assumes you control the complete system

Equilibrium determines what activities run, and who produces what

Ferris (Univ. Wisconsin) Coupled Opt Models Cornell, April 2011 16 / 26



Supply function equilibria

OPF(α): miny energy dispatch cost (y , α)
s.t. conservation of power flow at nodes

Kirchoff’s voltage law, and simple bound constraints

α are (given) price bids, parametric optimization

Leader(ᾱ−i ): maxαi ,y ,λ firm i ’s profit (αi , y , λ)
s.t. 0 ≤ αi ≤ α̂i

y solves OPF(αi , ᾱ−i )

Note that objective involves multiplier from OPF problem

Leader(ᾱ−i ): maxαi ,y ,λ firm i ’s profit (y , λ, α)
s.t. 0 ≤ αi ≤ α̂i

y , λ solves KKT(OPF(αi , ᾱ−i ))

This is an example of an MPCC since KKT form complementarity
constraints
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Multi-player EPEC and security constraints

(ᾱ1, ᾱ2, . . . , ᾱm) is an equilibrium if

ᾱi solves Leader(ᾱ−i ), ∀i

(Nonlinear) Nash Equilibrium where each player solves an MPCC

MPCC is hard (lacks a constraint qualification)

Nash Equilibrium is PPAD-complete (Chen et al, Papadimitriou et al)

In practice, also require contingency (scenario) constraints imposed in
the OPF problem

Leader/follower game: Stackleberg

Supply chains with “market leader”
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ᾱi solves Leader(ᾱ−i ), ∀i
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Transmission switching

Opening lines in a transmission network can reduce cost
But that is infeasibleBut that is infeasibleBut that is infeasible…But that is infeasible…

Capacity limit: 100 MW
$20/MWh

200 MW generated

133 MW

200 MW load

67 MW

200 MW load

$40/MWh

9

(a) Infeasible due to line capacity

A feasible dispatchA feasible dispatchA feasible dispatchA feasible dispatch
Total Cost:  $20/MWh x 100 MWh          

+$40/MWh x 100 = $6 000/h

Capacity limit: 100 MW
$20/MWh

100 MW generated
+$40/MWh x 100  $6,000/h

67 MW

200 MW l d
33MW

100 MW 
generated

33MW

200 MW load

$40/MWh

g

67 MW$40/MWh 67 MW

10

(b) Feasible dispatch

Need to use expensive generator due to power flow characteristics and
capacity limit on transmission line
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The basic model

ming ,f ,θ cTg generation cost
s.t. g − d = Af , f = BAT θ A is node-arc incidence

θ̄L ≤ θ ≤ θ̄U bus angle constraints
ḡL ≤ g ≤ ḡU generator capacities
f̄L ≤ f ≤ f̄U transmission capacities

with transmission switching (within a smart grid technology) we modify as:

ming ,f ,θ cTg
s.t. g − d = Af

θ̄L ≤ θ ≤ θ̄U
ḡL ≤ g ≤ ḡU

either fi = (BAT θ)i , f̄L,i ≤ fi ≤ f̄U,i if i closed
or fi = 0 if i open

Use EMP to facilitate the disjunctive constraints (several equivalent
formulations, including LPEC)
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But who cares?

Why aren’t you using my *********** algorithm?
(Michael Ferris, Boulder, CO, 1994)

Show me on a problem like mine

Must run on defaults

Must deal graciously with poorly specified cases

Must be usable from my environment (Matlab, R, GAMS, ...)

Must be able to model my problem easily

EMP provides annotations to an existing optimization model that convey
new model structures to a solver
NEOS is soliciting case studies that show how to do the above, and will
provide some tools to help
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)

Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions
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The model details: c.f. Brown, Demarzo, Eaves
Each agent maximizes:

uh = −
∑
s

πs

(
κ−

∏
l

c
αh,l

h,s,l

)
Time 0: ∑

l

p0,lch,0,l +
∑
k

qkzh,k ≤
∑
l

p0,leh,0,l

Time 1: ∑
l

ps,lch,s,l ≤
∑
l

ps,l
∑
k

Ds,l ,k ∗ zh,k +
∑
l

ps,leh,s,l

Additional constraints (complementarity) outside of control of agents:

0 ≤ −
∑
h

zh,k ⊥ qk ≥ 0

0 ≤ −
∑
h

dh,s,l ⊥ ps,l ≥ 0
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Stochastic programming and risk measures

SP: min c>x + R[d>y ]

s.t. Ax = b

T (ω)x + W (ω)y(ω) ≥ h(ω), for all ω ∈ Ω,

x ≥ 0, y(ω) ≥ 0, for all ω ∈ Ω.

Annotations are slightly more involved but straightforward:

Need to describe probability distribution

Define (multi-stage) structure (what variables and constraints belong
to each stage)

Define random parameters and process to generate scenarios

Can also define risk measures on variables

Automatic reformulation (deterministic equivalent), solvers such as
DECIS, etc.
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Additional techniques requiring extensive computation

Chance constraints: Prob(Tix + Wiyi ≥ hi ) ≥ 1− α - can
reformulate as MIP and adapt cuts

Use of discrete variables (in submodels) to capture logical or discrete
choices

Optimization of simulation or noisy functions

Robust or stochastic programming

Decomposition approaches to exploit underlying structure identified
by EMP

Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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