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Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min
x∈X

f (x) = E[F (x , ξ)] =

∫
ξ
F (x , ξ)p(ξ)dξ

(p is probability distribution).

Can think of this as optimization with noisy function evaluations

Traditional Stochastic Optimization approaches: (Robinson/Munro,
Keifer/Wolfowitz)

Often require estimating gradients: IPA, finite differences

Stochastic neighborhood search
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Example: Two stage stochastic LP with recourse

min
x∈Rn

cT x + E[Q(x , ξ)] s.t. Ax = b, x ≥ 0

Q(x , ξ) = min
y

qT y s.t. Tx + Wy = h, y ≥ 0

ξ = (q, h,T ,W ) (some are random). Expectation wrt ξ.
x are first stage vars, y are second stage vars.
Special case: discrete distribution Ω = {ξi : i = 1, 2, . . . ,K}
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igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

Deterministic equivalent problem
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Key-idea: Non-anticipativity constraints

Replace x with
x1, x2, . . . , xK

Non-anticipativity:
(x1, x2, . . . , xK ) ∈ L
(a subspace) - the H
constraints

to let x,... , be copies of the firststage variable and rewrite (15) as 

1 , . . . ,r 16) 

The equations x ... = x express independence of first-stage decisions on the realizations 
of h and are called non-anticipativity constraints. Of course, there are several ways to express 
this property. To be flexible in this respect and for notational convenience we assume that 
non-anticipativity is represented by the constraint XX=i Hx = 0 where H = ( , . . . , H 
is a suitable matrix. The block structure of the constraints matrix of formulation (16) can be 
seen in igure 2 . Separability of 16) can be achieved when removing the non-anticipativit 

T W 

T 

H 

W 

igure Constraints matrix of the scenario formulation 16) 

conditions from the constraints. This leads to considering the following agrangian relaxation 
of 16) 

(\ min { J2 {x y : A < 6 G X, 

< h, y 1 , . . . r } , 

17) 

where 

(x y (cx \{ for 1 , . . . r 

The problem max^ D(X) is called the Lagrangian dual of (16). From the theory of integer 
linear programming it is well known (cf. Nemhauser and Wolsey 1988) that the optimal value 
of the agrangian dual is a lower bound to the optimal value of (16) which is strict in general 
but greater than or equal on the lower bound given by the LP relaxation of 16). If for some 

Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.

Primal and dual decompositions (Lagrangian relaxation, progressive
hedging, etc)

L shaped method (Benders decomposition applied to det. equiv.)

Trust region methods and/or regularized decomposition
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Complications

Multistage problems
I recursive application of above, scenario trees
I dynamic programming approaches - see Judd talk
I reinforcement learning, neuro-dynamic programming
I real options

Stochastic integer programming

Stochastic variational inequalities / complementarity problems

Nonlinear (convex or otherwise) recourse models
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Sampling methods
But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

Implementation uses common random numbers, distributed
computation

Monte Carlo Sampling (Quasi-Monte Carlo Sampling)
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Variance reduction

Choose ξ1, ξ2, . . . , ξN carefully (essentially exploting properties of
numerical integration) to reduce the variance of f̂N(x)

Latin Hypercube Sampling

Importance Sampling, Likelihood ratio methods

Significantly improves performance of optimization codes
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Example: Robust Linear Programming

Data in LP not known with certainty:

min cT x s.t. aT
i x ≤ bi , i = 1, 2, . . . ,m

Suppose the vectors ai are known to be lie in the ellipsoids (no
distribution)

ai ∈ εi := {āi + Piu : ‖u‖2 ≤ 1}

where Pi ∈ Rn×n (and could be singular, or even 0).
Conservative approach: robust linear program

min cT x s.t. aT
i x ≤ bi , for all ai ∈ εi , i = 1, 2, . . . ,m
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Robust Linear Programming as SOCP

The constraints can be rewritten as:

bi ≥ sup
{

aT
i x : ai ∈ εi

}
= āT

i x + sup
{

uTPT
i x : ‖u‖2 ≤ 1

}
= āT

i x +
∥∥∥PT

i x
∥∥∥

2

Thus the robust linear program can be written as

min cT x s.t. āT
i x +

∥∥∥PT
i x
∥∥∥

2
≤ bi , i = 1, 2, . . . ,m

min cT x s.t. (bi − āT
i x ,PT

i x) ∈ C

where C represents the second-order cone. Solution (as SOCP) by Mosek
or Sedumi, CVX, etc
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Example: Simulation Optimization

Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields

Optimization applications: calibration, parameter tuning, inverse
optimization, pde-constrained optimization

min
x∈X

f (x) = E[F (x , ξ)],

The sample response function F (x , ξ)
I typically does not have a closed form, thus cannot provide gradient or

Hessian information
I is normally computationally expensive
I is affected by uncertain factors in simulation
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Bayesian approach

The underlying objective function f (x) still has to be estimated.

Denote the mean of the simulation output for each system as
µi = f (xi ) = E[F (xi , ξ)]

In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

µi |X ∼ N(µ̄i , σ̂
2
i /Ni ),

where µ̄i is sample mean and σ̂2
i is sample variance. The above

formulation is one type of posterior distribution.

Instrument existing optimization codes to use this derived distribution
information

I Derivative free optimization, surrogate optimization
I Response surface methodology
I Evolutionary methods
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Example: Chance Constrained Problems

min
x∈X

f (x) s.t. Prob(C (x , ξ) > 0) ≤ α

α is some threshold parameter, C is vector valued

joint probabilistic constraint: all constraints satisfied simultaneously -
possible dependence between random variables in different rows

extensive literature

linear programs with probabilistic constraints are still largely
intractable (except for a few very special cases)

I for a given x ∈ X , the quantity Prob(C (x , ξ) > 0) requires
multi-dimensional integration

I the feasible region defined by a probabilistic constraint is not convex

Recent work by Ahmed, Leudtke, Nemhauser and Shapiro
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Example: Risk Measures

Classical: utility/disutility function u(·):

min
x∈X

f (x) = E[u(F (x , ξ))],

Modern approach to modeling risk aversion uses concept of risk
measures

I mean-risk
I semi-deviations
I mean deviations from quantiles, VaR, CVaR
I Römish, Schultz, Rockafellar, Urasyev (in Math Prog literature)
I Much more in mathematical economics and finance literature
I Optimization approaches still valid, different objectives

Michael Ferris (University of Wisconsin) Stochastic optimization Chicago: July 21, 2008 13 / 15



CVaR constraints: mean excess dose (radiotherapy)
VaR, CVaR, CVaR+  and CVaR-

Loss 

F
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n
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1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

Move mean of tail to the left!
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So what’s my point?

Modeling and optimization model building is key!

Economic models versus scientific engineering models: philosophical
differences in usage

Many different optimization approaches to treat (model) uncertainties

How much do I know about distribution of data?

Specific models needed for these applications

Modeling systems (GAMS, AMPL, AIMMS) have had limited impact
due to no common input/model format

Stochastic model implementation and interfaces to these tools are
needed

Michael Ferris (University of Wisconsin) Stochastic optimization Chicago: July 21, 2008 15 / 15


	Uncertainty
	Stochastic Programming
	Robust Optimization
	Simulation
	Other Formulations

