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Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min f(x) = E[F(x.€)] = /ﬁ F(x,&)p(§)d¢

(p is probability distribution).

Can think of this as optimization with noisy function evaluations

Traditional Stochastic Optimization approaches: (Robinson/Munro,
Keifer /Wolfowitz)

Often require estimating gradients: IPA, finite differences

Stochastic neighborhood search
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Example: Two stage stochastic LP with recourse

min ¢"x + E[Q(x,£)] s.t. Ax=b,x >0

xeRn

Q(x,6) =ming y st. Tx+ Wy =h,y >0
y

¢ =1(q,h, T, W) (some are random). Expectation wrt &.
x are first stage vars, y are second stage vars.
Special case: discrete distribution Q = {&; : i =1,2,...,K}

A

T w ‘

T

Deterministic equivalent problem
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Key-idea: Non-anticipativity constraints

]

@ Replace x with
X1, X2, -+, XK

@ Non-anticipativity:
(x1,%2,...,xk) € L r

(a subspace) - the H ‘ I
constraints
Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.
@ Primal and dual decompositions (Lagrangian relaxation, progressive
hedging, etc)
o L shaped method (Benders decomposition applied to det. equiv.)

@ Trust region methods and/or regularized decomposition
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Complications

>

>
>
>

Multistage problems

recursive application of above, scenario trees
dynamic programming approaches - see Judd talk
reinforcement learning, neuro-dynamic programming
real options

Stochastic integer programming

@ Stochastic variational inequalities / complementarity problems
@ Nonlinear (convex or otherwise) recourse models
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

@ Take sample &1,...,&y of N realizations of random vector &

» viewed as historical data of N observations of &, or
> generated via Monte Carlo sampling

e for any x € X estimate f(x) by averaging values F(x, ;)
N
(SAA): min fu(x) = Z: x, &)

@ Nice theoretical asymptotic properties
@ Can use standard optimization tools to solve the SAA problem

@ Implementation uses common random numbers, distributed
computation

e Monte Carlo Sampling (Quasi-Monte Carlo Sampling)
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Variance reduction

Choose &1, &, ..., &n carefully (essentially exploting properties of
numerical integration) to reduce the variance of fy(x)

@ Latin Hypercube Sampling
@ Importance Sampling, Likelihood ratio methods

Significantly improves performance of optimization codes
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Example: Robust Linear Programming

Data in LP not known with certainty:

minc’ x s.t. a,Txgb,-,izl,Z...,m

Suppose the vectors a; are known to be lie in the ellipsoids (no
distribution)

aj €ei:=A{ai+ Pju:|ul, <1}

where P; € R™*" (and could be singular, or even 0).
Conservative approach: robust linear program

minc’ x s.t. a,~Tx§b,-, forallaj €e;,i=1,2,...,m
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Robust Linear Programming as SOCP

The constraints can be rewritten as:
T, .
b > sup{a,- X:aj € 5;}
= 3/ x+sup {uTP,-Tx ully < 1} =3/ x+ HP,-TXH2
Thus the robust linear program can be written as

minc’x s.t. E,Tx—i— HP,-TXH <bj,i=12,....,m
2

minc’x st. (b — 3] x, P/ x) e C

where C represents the second-order cone. Solution (as SOCP) by Mosek
or Sedumi, CVX, etc
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Example: Simulation Optimization

@ Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

@ Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields

@ Optimization applications: calibration, parameter tuning, inverse
optimization, pde-constrained optimization

min f(x) = E[F(x.€)]

@ The sample response function F(x, &)
» typically does not have a closed form, thus cannot provide gradient or
Hessian information
> is normally computationally expensive
> is affected by uncertain factors in simulation
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Bayesian approach

@ The underlying objective function f(x) still has to be estimated.

@ Denote the mean of the simulation output for each system as
pi = f(x;) = E[F(xi, )]

@ In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

il X ~ N(fi;, 67/ N;),

where [i; is sample mean and 6,-2 is sample variance. The above
formulation is one type of posterior distribution.

@ Instrument existing optimization codes to use this derived distribution
information

» Derivative free optimization, surrogate optimization
» Response surface methodology
» Evolutionary methods
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Example: Chance Constrained Problems

)r(nei)rg f(x) s.t. Prob(C(x,&) >0) < «

« is some threshold parameter, C is vector valued

@ joint probabilistic constraint: all constraints satisfied simultaneously -
possible dependence between random variables in different rows
@ extensive literature

@ linear programs with probabilistic constraints are still largely
intractable (except for a few very special cases)

» for a given x € X, the quantity Prob(C(x, &) > 0) requires
multi-dimensional integration
» the feasible region defined by a probabilistic constraint is not convex

@ Recent work by Ahmed, Leudtke, Nemhauser and Shapiro

Michael Ferris (University of Wisconsin) Stochastic optimization Chicago: July 21, 2008 12 /15



Example: Risk Measures

o Classical: utility/disutility function u(-):

min f(x) = E[u(F(x,£))],

xeX

@ Modern approach to modeling risk aversion uses concept of risk

measures
» mean-risk
» semi-deviations
» mean deviations from quantiles, VaR, CVaR
» Romish, Schultz, Rockafellar, Urasyev (in Math Prog literature)
» Much more in mathematical economics and finance literature
» Optimization approaches still valid, different objectives
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CVaR constraints: mean excess dose (radiotherapy)

Maximum

Frequency

T VaR loss
‘ Probability
1 ‘ ‘ 1
CVaR
L. .u..|||ﬂ|” “M""IHII‘mm-- | _

Loss

Move mean of tail to the left!
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So what's my point?

@ Modeling and optimization model building is key!

@ Economic models versus scientific engineering models: philosophical
differences in usage

e Many different optimization approaches to treat (model) uncertainties

@ How much do | know about distribution of data?

@ Specific models needed for these applications

e Modeling systems (GAMS, AMPL, AIMMS) have had limited impact

due to no common input/model format

@ Stochastic model implementation and interfaces to these tools are
needed
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