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The MOPEC problem (GNE)
Assume there are N agents, find (x∗1 , . . . , x

∗
N , π

∗) such that for each agent:

x∗a ∈ arg min fa(xa; x∗−a, π
∗)

s.t. xa ∈ Xa(x∗−a, π
∗)

and a market equilibrium constraint:

0 ∈ H(π∗; x∗) + NP(π∗)

Variables:

xa: variable controlled by each agent a

x−a = (x1, x2, . . . , xa−1, xa+1, . . . , xN): action of other agents

price variable π, set by the market equilibrium constraint

Optimizations might be large LP or QP models of particular sectors

Extensive literature, hard problems (non-monotone) even if fa strongly
convex
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Structure

Agent optimization problems at
nodes

Complementarity links across
agents
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Risk modeling

Modern approach to
modeling risk
aversion uses concept
of risk measures

Considers not only
the expected value of
the uncertain
quantities, but also
more “extreme
events”

VaR, CVaR, CVaR+  and CVaR-
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Maximum
loss

CVaRα: mean of upper tail beyond α-quantile (e.g. α = 0.95)

Dual representation (of coherent r.m.) in terms of risk sets: D [4]

ρ(Z ) = sup
µ∈D

Eµ[Z ]

Different agents have different risk profiles
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One example: MOPEC equilibrium

Agents (e.g): ’fos’, ’ren’, ’trns’, ’dem’:

S(a): min ρa(ψa) s.t. (za, ya, qa, ra) ∈ Xa

ψa(ω) = Ca(za) + Za(ya, qa, ra, ω)
+πe(ω) (da(ω)− qa(ω)− ra(ω))
+πc(ω)E(ya, ω)

and the prices, production and purchases satisfy the market clearing
conditions

0 ≤
∑
a

(qa(ω) + ra(ω)− da(ω)) ⊥ πe(ω) ≥ 0,

0 ≤ E −
∑
a

E(ya, ω) ⊥ πc(ω) ≥ 0.

[2] provides theory to show when system optimization is equivalent
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Increasing risk aversion: carbon price and investment

ρ(Z ) = (1− λ)E[Z ] + λAVaR0.90(Z )

Same price risk neutral

Competitive equilibrium: increased price

VertInt: co-ownership of wind/thermal results in more wind closer to
existing thermal

(a) Carbon prices with increasing λ (b) Ownership at λ = 0.3
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These problems are computationally challenging

Standard methods to solve the MOPEC problem

Convert the MOPEC problem to mixed complementarity problem
(EMP does this) and solve it using PATH solver

Or traditional decomposition method: splitting, prox-gradient

EMP/PATH fails to solve large-scale MOPEC problems

Decompositions usually fail to solve the problem without helpful
problem properties, and slow convergence
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Solution method: Primal penalty and dual method

Agent based decomposition (prox gradient)

Penalty (Augmented Lagrangian) of the constraint H(x , π) ≥ 0 in the
primal agents’ problems and updating dual in the major iterations.

Able to solve the problem in situation without having an implicit
function π = h(x) from the constraint 0 ≤ H(x , π) ⊥ π ≥ 0.

Performance mainly depends on the choice of γ. γ small enough
enables algorithm to converge to the true solution, but too small γ
may cause slow convergence.
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Algorithm 1 Gauss-Seidel Primal penalty and dual method

1: set k = 0, define initial point π0.
2: while stopping criterion not met do
3: for a = 1, 2, . . . ,N do
4: get solution (xk+1

a , yk+1
a ) from solving

min fa(xa, x̄
k+1
−a , πk) + yTa π

k + 0.5γ · (ya)2

s.t. xa ∈ Xa(x̄k+1
−a , πk)

ya ≥ −H(xa, x̄
k+1
−a , πk)

ya ≥ 0

here x̄k+1
−a = (xk+1

1 , . . . , xk+1
a−1 , x

k
a+1, . . . , x

k
N).

5: end for
6: πk+1 = max{0, πk − γ · H(xk+1, πk)}
7: k = k + 1
8: end while
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Comparison between PATH and Primal-Dual method
risk neutral

size
PATH Primal-Dual

time(secs) γ # Iter time(secs)

62K × 22K 1795.79 0.005 75 333.21

risk averse

size residual
PATH Primal-Dual

time(secs) γ # Iter time(secs)

114 × 62 1e-6 - 0.05 264 35.87
114 × 62 1e-6 - 0.1 162 20.97
114 × 62 1e-6 - 0.5 334 45.45

21K × 8.5K < 1 - 0.005 32 165.76

The stopping criterion is 1e-6

In risk-averse setting, PATH fails to find a solution without good
initial point even in small cases
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Risk Measures

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {λ ∈ [0, p/(1− α)] : 〈1, λ〉 = 1}, then ρ(Z ) = CVaRα(Z )

Popular examples include: expectation, Conditional Value at Risk,
also known as expected shortfall, Average Value at Risk (AVaR), and
expected tail loss (ETL), and mean-upper-absolute semideviation.

Using the algebra of support function, we can create new risk measures
from existing ones: for instance

(1− λ)E + λCVaRα

captures more realistic risk-averse behavior. For λ < 1, it is strictly
monotone (desirable for time-consistency)
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The transformation to complementarity

min
x∈X

θ(x) + ρ(F (x))

ρ(y) = sup
u∈U

{
〈u, y〉 − 1

2
〈u,Mu〉

}
conjugate composite function:

0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

calculus:

0 ∈ ∂θ(x) +∇F (x)Tu + NX (x)

0 ∈−u + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + Mu + NU(u)

This is a complementarity problem (solvable by PATH)

Equilibrium formulation
(Fenchel) duality formulation
Extreme point formulation
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Conjugate composite function (CCF)

ρ(y) := sup
u∈U
〈G (y), u〉 − k(u) (1)

G (y) := By + b , k is convex, U polyhedral [1]

Conjugate function G ≡ Id

ρ is the conjugate function of δU + k

Support function G ≡ Id , k ≡ 0

ρ is the support function of U.
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Conversion of constraint to objective
Can extend the conjugacy result to a nested version. Suppose that each
component of F has the form Fi = fi + ρ̂i ◦ F̂i and consider the CCF
composition ρ ◦ F .
Then, for any x̄ ∈ dom(ρ ◦ F ) we have

∂(ρ ◦ F )(x̄) = {∂〈v ,F 〉(x̄) | v ∈ ∂ρ(F (x̄))}.

and

∂〈v ,F 〉(x̄) = {〈v ,∇f 〉(x̄) + 〈v ,w〉 where v ∈ ∂ρ(F (x̄))

and wi ∈ {∂〈v̂i , F̂i 〉(x̄) | v̂i ∈ ∂ρ̂i (F̂i (x̄))} for i ∈ {1, . . . , q}},

where f collects all fi .
So

min
x∈X

θ(x) + δR−(ρ(F (x))− α) = min
x∈X

θ(x) + σR+(ρ(F (x))− α)

and we can apply the nested conjugacy result.
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When is ρ ◦ F convex?

Uses the concept of K -convexity.

Lemma

Let F : Rp → Rl
• with Fi : Rp → R lsc, proper, convex for all

i ∈ {1, . . . , l}. Then, for any coherent risk measure ρ, the composition
ρ ◦ F is lsc, proper, convex and dom(F ) ⊆ dom(ρ ◦ F ).
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Reformulation via duality

Dualization [3]

max
u
〈u,G (F (x))〉 − 〈u,Mu〉

Au − b ∈ Kc

u ∈ Ku

min
z,w
〈b, z〉+ 1

2〈w , Jw〉

G (F (x))− AT z − Dw ∈ K ◦u

z ∈ K ◦c w free

Ku and Kc convex cones with polar K ◦u and K ◦c

Improvement to dual QP reformulation

“The larger Ku, the smaller K ◦u is”

If u is free, then Ku is the whole space and K ◦u = {0}
Try to use simple bounds to reduce Ku

Look for ũ such that u − ũ ∈ Rn
+

G (F (x))− AT z −Dw −MT ũ ∈ Rn
−: F convex ⇒ convex constraints
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Reformulation via conjugacy

ρ as a conjugate function

ρ is the (Fenchel) conjugate of k + δU :

ρ(u) = inf
u=u1+u2

k∗(u1) + σU(u2)

k(u) = uTMu = ‖LTu‖2 (M psd)

ρ(F (x)) = inf
s

1
2‖s‖

2
2 + σU(G (F (x))− Ls) (2)

⊕ Problem (2) may be convex if all Fi are convex (U ⊂ R+
m)

⊕ Equivalent minimization problem (can use broad range of solvers)

	 Need closed-loop expression for σU
I Replace σU by t and compute vertices V of U and add constraints
〈v ,G (F (x))− Ls〉 ≤ t ∀v ∈ V

I If U is a convex cone, replace σU by δU◦
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Scenario tree with nodes N = {0, 1, . . . , 8}, and T = 3

ρn0◦Fn0

fn3 + ρn3◦Fn3

fn8 fn7

fn2 + ρn2◦Fn2

fn6

fn1 + ρn1◦Fn1

fn5 fn4

At leaf nodes:

min
xa`

fa`(xa`; x9a`, x·`− ,π`) ∀a ∈ A,

0 ∈ H`(π`; x·`) + NP`
(π`)

“;” separates variables from parameters in function definition
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Stochastic equilibrium (nested definition)
ρn0◦Fn0

fn3 + ρn3◦Fn3

fn8 fn7

fn2 + ρn2◦Fn2

fn6

fn1 + ρn1◦Fn1

fn5 fn4

Recursing back to the root node:

min
xaS(n0)

fan0(xan0 ; x9an0 , x·n0− ,πn0)

+Ran0([faj(xaj ; x9aj , x·n0 ,πj)

+Raj([fa`(xa`; x9a`, x·`− ,π`)]`∈j+)]j∈n0+) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ S(n0).

S(n) is the set of successor nodes of n, including n
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Simple dynamics (discrete time, finite horizon)

Complementarity links nodes
across agents

Dynamics link over time
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Scenario trees linked across agents

Complementarity links nodes of
scenario tree across agents

Dynamics link over time
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Example: risk-averse stochastic equilibria
market equilibrium: price defined by equilibrium constraints
producers have a random upper bound on their production capacities
and their ability to store goods from one stage to the other induces a
coupling across stages
objective function: revenue minus cost of production
A, the scenario tree has 3 stages with 13 nodes, and there are 5
players in the market with 2 goods.
B, the scenario tree has 4 stages with 30 nodes, and we have 2
players with 1 good.
C has 5 stages, 121 nodes, 2 players and 1 good.

Equilibrium Duality Conjugate
T (s) vars nnz T (s) vars nnz T (s) vars nnz

A 1.6 584 2775 5.2 644 2990 3.8 584 3530
B 9.0 455 2382 3.0 533 2774 Fail 455 2498
C 2.2 1400 8700 Fail 1640 10280 Fail 1400 7736

Different reformulations via option file
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Multistage deterministic equivalent

P(y) minx tan∈Xat fa1(x1a1, x
1
−a1, π

1
1) +

∑
n∈1+ y2an ·

[
fa2(x2an, x

2
−an, π

2
n, ξ

2
n) +

∑
m∈n+ y3am [. . . ]

]
s.t ha1(xa0, x

1
a1) = 0, ga1(x1a1, x

1
−a1, π

1
1) ≤ 0,

hat(x
t−1
an−, x

t
an, ξ

t
n) = 0, gat(x

t
an, x

t
−an, π

t
n, ξ

t
n) ≤ 0, ∀t = 2, . . . ,T , ∀n ∈ N (t)

with the VI constraints

0 ≤ H1(x1
1 , π

1
1) ⊥ π11 ≥ 0

0 ≤ Ht(x t
n, π

t
n, ξ

t
n) ⊥ πtn ≥ 0, ∀t = 2, . . . ,T , ∀n ∈ N (t)

For any t = 1, . . . ,T − 2, n ∈ N (t) the dual maximization problem

Dt
an(x ,π, yn++) : max{y t+1

am }m∈n+
∑

m∈n+ y t+1
am ·

[
fat+1(x t+1

am , x t+1
−am, π

t+1
m , ξt+1

m ) +
∑

r∈m+ y t+2
ar [. . . ]

]
s.t y t+1

a ∈ Dt+1
a

For any t = T − 1, n ∈ N (t) the dual maximization problem

Dt
an(x ,π) : max{y t+1

am }m∈n+
∑

m∈n+ y t+1
am ·

[
fat+1(x t+1

am , x t+1
−am, π

t+1
m , ξt+1

m )
]

s.t y t+1
a ∈ Dt+1

a
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Forward backward algorithm

Define y ∈ SOL(D(x , π))⇐⇒

{y t+1
am }m∈n+ ∈ Dt

an(xk ,πk), ∀t = T − 1, n ∈ N (t)

{y t+1
am }m∈n+ ∈ Dt

an(xk ,πk , yn++), ∀t = 1, . . . ,T − 2, n ∈ N (t)

Finding a solution of the stochastic MOPEC with risk-averse agents is
equivalent to find the solution (x∗, π∗, y∗) of the system

(x∗, π∗) ∈ SOL(P(y∗))

y∗ ∈ SOL(D(x∗, π∗))
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Detail of Forward backward algorithm

Algorithm 2 Forward-backward algorithm

1: set k = 1, set starting y0 equal to the probability of risk-neutral case.
2: while stopping criterion not met do
3: Solve the MOPEC with fixed risk probabilities P(yk−1) to get

(xk , πk) ∈ SOL(P(yk−1))
4: for t = T − 1, . . . , 1 do
5: for n ∈ N (t) do
6: if t = T − 1 then
7: {yk,t+1

am }m∈n+ ∈ Dt
an(xk ,πk)

8: else
9: {yk,t+1

am }m∈n+ ∈ Dt
an(xk ,πk , yk

n++)
10: end if
11: end for
12: end for
13: k = k + 1
14: end while
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Numerical experiments
Test problem cases:

MOPEC properites:
I Type I: fa(xa, x−a, π) = 1

2ε||xa||
2 + cT xa − πT xa + d , H(x , π) = Ax − b

I Type II: fa(xa, x−a, π) = 1
2ε||xa||

2 + cT xa − πT xa + d ,
H(x , π) = Ax + Bπ − b

I Type III: fa(xa, x−a, π) = 1
2ε||xa||

2 + cT xa − (B−1(b − Ax))T xa + d , no
VI constraint and market price variable π

Coherent risk measure:
I ρ(v) = (1− λ)E[v ] + λCVaR1−α(v), where CVaR1−α(·) is the upper

tail risk measure.

Initial point strategy for PATH solver:
I Strategy 1: Initial point (x , π, y) is uniformly randomly picked in the

feasible region
I Strategy 2: (x , π) of the initial point is the solution of risk-neutral

problem and y is generated so initial basis matrix of PATH is
nonsingular.

I Strategy 3: Run several sweep forward-backward algorithms and use
the point achieved as the initial point
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Numerical results: performance of different strategies in
choosing initial point

MOPEC Type Ini Stra total # success # success ratio

I 1 1000 375 37.5%
I 2 1000 555 55.5%
I 3(2) 1000 865 86.5%
II 1 1000 539 53.9%
II 2 1000 711 71.1%
II 3(2) 1000 870 87%
III 1 1000 813 81.3%
III 2 1000 892 89.2%
III 3(2) 1000 921 92.1%

test problem size:
I agent #: 2
I scenario tree node size: 39
I time stage size: 4
I Corresponding MCP size: 455
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Numeral results: changing ε and λ with fixed α = 0.75

|N | T MOPEC type ε λ Ini Stra total # succ # succ r FB s # FB s r

39 4 I 0 0.1 3(5) 16 16 100.00% 0 0.00%
39 4 I 0 0.3 3(5) 16 16 100.00% 0 0.00%
39 4 I 0 0.5 3(5) 16 8 50.00% 0 0.00%
39 4 I 0 0.7 3(5) 16 2 12.50% 0 0.00%
39 4 I 0 0.9 3(5) 16 0 0.00% 0 0.00%
39 4 I 1e-2 0.1 3(5) 16 16 100.00% 7 43.75%
39 4 I 1e-2 0.3 3(5) 16 16 100.00% 1 6.25%
39 4 I 1e-2 0.5 3(5) 16 16 100.00% 0 0.00%
39 4 I 1e-2 0.7 3(5) 16 8 50.00% 0 0.00%
39 4 I 1e-2 0.9 3(5) 16 4 25.00% 0 0.00%
39 4 I 1e-1 0.1 3(5) 16 16 100.00% 12 75.00%
39 4 I 1e-1 0.3 3(5) 16 16 100.00% 11 68.75%
39 4 I 1e-1 0.5 3(5) 16 16 100.00% 7 43.75%
39 4 I 1e-1 0.7 3(5) 16 16 100.00% 5 31.25%
39 4 I 1e-1 0.9 3(5) 16 16 100.00% 7 43.75%
39 4 I 1 0.1 3(5) 16 16 100.00% 16 100.00%
39 4 I 1 0.3 3(5) 16 16 100.00% 16 100.00%
39 4 I 1 0.5 3(5) 16 16 100.00% 16 100.00%
39 4 I 1 0.7 3(5) 16 16 100.00% 15 93.75%
39 4 I 1 0.9 3(5) 16 16 100.00% 16 100.00%
39 4 I 10 0.1 3(5) 16 16 100.00% 16 100.00%
39 4 I 10 0.3 3(5) 16 16 100.00% 16 100.00%
39 4 I 10 0.5 3(5) 16 16 100.00% 15 93.75%
39 4 I 10 0.7 3(5) 16 16 100.00% 16 100.00%
39 4 I 10 0.9 3(5) 16 16 100.00% 15 93.75%
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Conclusions

Markets naturally modeled via complementarity

Solvers exist for medium to large scale problems

Frameworks (EMP) exist to streamline model transformations

empinfo: dualvar, bilevel, equilibrium, vi, CCF

Very large scale models (many agents with many instruments acting
strategically) with risk are hard

Decomposition/diagonalization methods are effective when sensitivity
information is exploited

New algorithms enable solution of more detailed, authentic problems
and address underlying policy questions
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